Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho đường tròn (O) , đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. Gọi E là giao điểm của AC và BM.
A)cmr:NE vuông góc với AB
B)Gọi F là điểm đối xứng với E qua M.CM: FA là tiếp tuyến của (O)
C)CM: NF là tiếp tuyến của đường tròn(B;BA)
D)CM:BM.BF=BF2-NF2
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
Gọi I và O lần lượt là tâm của đường tròn nội tiếp và đường tròn ngoại tiếp tam giác nhọn ABC. Tia AI cắt (O) tại K(K khác A).gọi J là điểm đối xứng của I qua K,Q là điểm đối xứng của O qua BC.
a. Chứng minh tam giác KBIcân tại K và tam giác IBJvuông tại B
b. chứng minh nếu góc BAC=60 độ thì điểm Q thuộc (O)
Cho ∆ABC (AB < AC) nhọn, không cân, có đường cao AD, BE, CF. Gọi M, N là trung điểm của AB, AC. Hai điểm P, Q lần lượt đối xứng với E, F qua M, N. Dường tròn ngoại tiếp ∆ABC và ∆APQ cắt nhau tại điểm K khác A
a)Chứng minh rằng ∆BQK và ∆CPK ddoognf dạng và hai đường thẳng AK, BC song song
b) Chứng minh rằng DK đi qua trong tâm của ∆ABC
Cho nửa đường tròn tâm O đường kính BC = 2R và 1 điểm A trên nửa đường tròn đó.Vẽ AH vuông góc với BC. Gọi I và K lần lượt là các điểm đối xứng của H qua AB và qua AC.Chứng minh rằng
a) Ba điểm I,A,K thẳng hàng
b) IK là tiếp tuyến của đường tròn tâm O
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Bài 3. (4 điểm) Cho hai đường tròn (O) và (O’) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC, B ∈ (O); C ∈ (O’). Tiếp tuyến chung trong tại A cắt tiếp tuyến chung ngoài BC tại I. a) Chứng minh rằng góc BAC = 900 b) Trên tia đối của tia IA lấy điểm D sao cho IA = ID. Tứ giác ABDC là hình gì? Vì sao? c) Tính độ dài BC trong trường hợp OA = 7,2cm và O’A = 3,2cm d) Gọi giao điểm của OI và AB là M; giao điểm của O’I và AC là N.