Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thị Huệ

Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ

a: Chứng minh AMB là tam giác đều

b: Tính chu vi tam giác AMB

c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?

Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy

a: tứ giác APMQ là hình gì? Vì sao?

b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM

Ánh Loan
18 tháng 11 2016 lúc 20:30

c

Gọi H là giao điểm của AB và OM

a, Xét Δv MAO và ΔvMBO

Có MO chung

AO=OB(=bk)

=> ΔvMAO= ΔMBO (ch-cgv)

=> MA=MB

Trong ΔAMB

Có MA=MB(cmt)

=> ΔAMB cân tại M

lại có góc AMB=60 độ

=> ΔAMB là Δ đều

b, Ta có: góc AMO=góc BMO ( ΔvMAO= ΔvMBO)

mà góc AMO+ góc BMO= góc AMB=60 độ

=> góc AMO=\(\frac{1}{2}.60=30^0\)

Áp dụng tỉ số lượng giác

Ta có : tan góc AMO=\(\frac{AO}{AM}\)

tan30=\(\frac{5}{AM}\)

=>AM=\(\frac{5}{tan30}=5\sqrt{3}\)

Chu vi ΔAMB= AM.3=\(5\sqrt{3}.3=15\sqrt{3}\)

c, Ta có OA=OB (=bk)

=> O thuộc đường trung trực AB(1)

MA=MB(cmt)

=> M thuộc đường trung trực AB (2)

Từ (1)(2)=> OM là cả đường trung trực

=> MO vuông góc AB (*)

Ta có: OA=OB=OC(=bk)

=> OB=\(\frac{1}{2}AC\)

mà OB là đường trung tuyến

=> Δ ABC vuông tại B

=> AB vuông góc BC(**)

Từ (*)(**)=> MO//BC

=> BMOC là hình thang

Ánh Loan
18 tháng 11 2016 lúc 20:41

Bài 2:

a,

Ta có : góc AQM=90 độ ( MQ vuông góc xy)

góc APM =90 độ ( MP vuông góc AB)

góc QAP=90độ ( xy vuông góc OA)

=> QMPA là hình chữ nhật

b, Trong hình chữ nhật QMPA:

Có : I là trung điểm của đường chéo thứ nhất QP

-> I cũng là trung điểm của đường chéo thứ 2 AM

=> IA=IM

=> OI vuông góc AM tại I ( đường kính đi qua trung điểm => vuông góc ( đ/Lý 3)


Các câu hỏi tương tự
Phạm Thị Huệ
Xem chi tiết
Ánh Loan
Xem chi tiết
nghiêm nam
Xem chi tiết
Kim Thị Thúy Anh
Xem chi tiết
Hoài Đoàn
Xem chi tiết
CôNgTửHọHà
Xem chi tiết
Linh Ngô
Xem chi tiết
wary reus
Xem chi tiết
Hoài Đoàn
Xem chi tiết