Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thị Thu Huyền

Cho tam giác ABC vuông tại A có đường cao AH . Trong các đoạn thẳng sau đây : AB,AC,BC,AH,HB,HC hãy tính các đoạn thẳng còn lại nếu biết :

a. AB=6cm , AC=8cm 

b. AH=9,6cm ,HC=12,8cm

c. AH=12cm , BC=25cm

d. AB=15cm , HB=9cm

e. HB=12,5cm , HC=7,2cm

Akai Haruma
15 tháng 10 2021 lúc 11:06

a.

$BC=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10$ (cm) theo định lý Pitago

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8$ (cm)

$BH=\sqrt{AB^2-AH^2}=\sqrt{6^2-4,8^2}=3,6$ (cm) theo định lý Pitago

$CH=BC-BH=10-3,6=6,4$ (cm)

b.

Áp dụng HTL trong tam giác vuông:

$AH^2=BH.CH$

$\Rightarrow BH=\frac{AH^2}{CH}=\frac{AH^2}{CH}=\frac{9,6^2}{12,8}=7,2$ (cm)

$BC=BH+CH=7,2+12,8=20$ (cm)

$AB=\sqrt{AH^2+BH^2}=\sqrt{9,6^2+7,2^2}=12$ (cm) theo Pitago

$AC=\sqrt{BC^2-AB^2}=\sqrt{20^2-12^2}=16$ (cm) theo Pitago

 

Akai Haruma
15 tháng 10 2021 lúc 11:09

c.

$AB.AC=AH.BC=12.25=300$

$AB^2+AC^2=BC^2=625$

$(AB+AC)^2-2AB.AC=625$

$AB+AC=\sqrt{625+2AB.AC}=\sqrt{625+2.300}=35$

Áp dụng Viet đảo thì $AB,AC$ là nghiệm của:

$X^2-35X+300=0$

$\Rightarrow (AB,AC)=(20,15)$ (giả sử $AB>AC$)

$BH=\sqrt{AB^2-AH^2}=\sqrt{20^2-12^2}=16$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{15^2-12^2}=9$ (cm)

Akai Haruma
15 tháng 10 2021 lúc 11:15

d.

Áp dụng HTL trong tam giác vuông:

$AB^2=BH.BC$

$\Rightarrow BC=\frac{AB^2}{HB}=\frac{15^2}{9}=25$ (cm)

$CH=BC-BH=25-9=16$ (cm)

Áp dụng HTL:

$AH=\sqrt{BH.CH}=\sqrt{9.16}=12$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20$ (cm)

e.

$BC=BH+CH=12,5+7,2=19,7$ (cm)

$AH=\sqrt{HB.HC}=\sqrt{12,5.7,2}=3\sqrt{10}$ (cm)

$AB=sqrt{AH^2+BH^2}=\sqrt{(3\sqrt{10})^2+12,5^2}=\frac{\sqrt{985}}{2}$ (cm)

$AC=\sqrt{AH^2+CH^2}=\sqrt{(3\sqrt{10})^2+7,2^2}=\frac{3\sqrt{394}}{5}$ (cm)

Akai Haruma
15 tháng 10 2021 lúc 11:16

Hình vẽ:


Các câu hỏi tương tự
lan duong
Xem chi tiết
Nguyên Anh Phạm
Xem chi tiết
Nguội Nguyễn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Vũ Thị Tâm
Xem chi tiết
Phạm Mạnh Kiên
Xem chi tiết
Ngọc Ánh Đoàn
Xem chi tiết
Lê Minh Hoàng
Xem chi tiết
Inuyasa
Xem chi tiết