a: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
c: Xét tứ giác AKHB có góc AKB=góc AHB=90 độ
nên AKHB là tứ giác nội tiếp
=>góc BKH=góc BAH=góc ACB
a: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)
\(AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)
c: Xét tứ giác AKHB có góc AKB=góc AHB=90 độ
nên AKHB là tứ giác nội tiếp
=>góc BKH=góc BAH=góc ACB
Cho tam giác ABC vuông tại A có đường cao AH. Biết BH= 4cm, CH= 9cm. a) Tính AH, AB, AC ? b) Gọi M là trung điểm của AC. Tính góc BMC? (số đo làm tròn đến độ) c) Kẻ AK vuông góc BM tại M. Chứng minh góc ACB = góc BKH
giúp mình với ạ
1) Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành hai đoạn: BH=4cm và HC=6cm
a) Tính độ dài các đoạn AH,AB,AC
b) Gọi M là trung điểm của AC. Tính số đo góc AMB( làm tròn đến độ )
c) Kẻ AK vuông góc với BM (K thuộc BM) . Chứng minh : BK.BM=BH.BC
Vẽ hình luôn ah
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 3,6cm. CH= 6,4cm. a) Tính độ dài các đoạn thẳng AB, góc ACB (góc làm tròn đến độ.) b) Trên cạnh AC lấy điểm M (M khác A; M khác C), kẻ AK vuông góc với BM tại K. Chứng minh rằng: BK.BM=BH.BC, từ đó suy ra tam giác BHK đồng dạng với tam giác BMC.
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 3,6cm. CH= 6,4cm. a) Tính độ dài các đoạn thẳng AB, góc ACB (góc làm tròn đến độ.) b) Trên cạnh AC lấy điểm M (M khác A; M khác C), kẻ AK vuông góc với BM tại K. Chứng minh rằng: BK.BM=BH.BC, từ đó suy ra tam giác BHK đồng dạng với tam giác BMC.
Cho tam giác ABC vuông tại A, có AH là đường cao.
1. Biết AH= 2/6 cm, BH = 4 cm.
a) Tính độ dài các đoạn thẳng HC, AC
b) Tính số đo góc ABH (làm tròn đến độ)
2. Cho AC = 3 .AB. Chứng minh: 3.tan C-cotC+ /sinC = sin 45°
3. Lấy điểm M trên đường tròn tâm B bán kính BA (M thuộc nửa mặt phẳng bờ BC, không chứa điểm A). Gọi SBMH là diện tích tam giác BMH, Sạc là diện tích tam giác BCM. Chứng minh rằng: SaMH =SHCM .sinº ACB
Bài 1 Cho tam giác ABC vuông tại A có đường cao AH .biết BH = 9 cm ,HC = 16 cm .tính AH; AC ;số đo góc ABC (số đo góc làm tròn đến độ)
bài 2 Cho tam giác ABC vuông tại A , đường cao AH. biết AB = 3 cm ,AC = 4 cm. Tính độ dài các cạnh BC, AH và số đo góc ACB (làm tròn đến độ)
Cho tam giác ABC vuông tại ,Ađường cao .AH Biết rằng 9 ; 16 .BH cm CH cm
a) Tính độ dài .AH
b) Tính số đo góc B, số đo góc C của tam giác ABC.(Kết quả tính làm tròn đến phút).
c) Gọi ,E F lần lượt là hình chiếu vuông góc của H trên , .AB AC Chứng minh 3. ..
Cho tam giác ABC vuông tại A có AH là đường cao. Biết BH 7,2cm và HC 12,8cm . a) Tính độ dài các đoạn AH , AC . b) Gọi I là trung điểm BC . Tính số đo góc ACB và góc IAC (làm tròn đến phút). c) Chứng minh: sin 2C = 2sinC.cosC
Cho tam giác ABC vuông tại A., đường cao AH. Biết BH = 1.8 cm; HC = 3,2 cm.
a. Tính độ dài AH ; AB; AC.
b. Tính số đo góc B và góc C.
c. Tia phân giác của góc B cắt AC tại D. Tính độ dài BD.
(số đo góc làm tròn đến độ, độ dài đoạn thẳng làm tròn đến chữ số thập phân thứ b
Cho tam giác ABC vuông tại A, AB<AC, đường cao AH.
a) Giả sử BH = 4 cm, CH = 5 cm. Tính độ dài AB và số đo góc B (làm tròn đến độ) b) Trên cạnh AC lấy điểm D (D khác A và C). Gọi K là hình chiếu của A trên BD.
Chứng minh: BK.BD=BH.BC và tam giác BKH đồng dạng với tam giác BCD. c) Chứng minh: 4 điểm A, B, K, H cùng thuộc một đường tròn. Xác định tâm O của đường tròn đó.
d) Gọi M và N lần lượt là hình chiếu của A và B trên HK. E là giao điểm thức hai của đường thẳng AM với (O). Chứng minh BE // MN.
help mik câu C D với :(