a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
Do đó: ΔABH\(\sim\)ΔCBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
Do đó: ΔABH\(\sim\)ΔCBA
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
c: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)
a)chứng minh tam giác ABC và tam giác HBA đồng dạng
b)chứng minh:AH mũ 2 =HB nhân HC
c)tính độ dài BC,AH
d)phân giác của góc ACB cắt AH tại E và cắt AB tại D.Tính tỉ số của 2 tam giác ACD và HCE
Đề bài:cho tam giác ABC vuông tại A có AB =6cm,AC =8cm.kẻ đường cao AH
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. Kẻ đường cao AH.
a) Chứng minh tam giác ABC đồng dạng với tam giác HBA
b) Tính độ dài cạnh BC, AH
c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE.
cho tam giác ABC vuông tại A , AB=12cm , AC=16cm. Vẽ đường cao AH( H thuộc BC ) và tia phân giác của góc A cắt BC tại D
a/ chứng minh tam giác HBA đồng dangj tam giác ABC
b/ Tính độ dài cạnh BC
c/ tính tỉ số diện tích của hai tam giác ABD và ACD
d/ Tính độ dài các đoạn thẳng BD và CD
e/ Tính độ dài chiều cao AH
cho tam giác ABC vuông tại A có AB=6cm;AC=8cm. kẻ đg cao AH.
a)chứng minh tam giác ABCđồng dạng tam giác HBA
b)chứng minh AH^2=HB.HC
c)tính độ dài của BC,AH
d)phân giác của góc ACB cắt AH tại E, cắt AB tại D. tính tỉ số diện tích của tam giác ACD và tam giác HCE
Cho tam giác ABC vuông tại A có AB= 6cm, AC=8 cm. Kẻ đường cao AH (H ϵ BC)
a) Chứng minh △ABC~△HBA
b) Tính độ dài các cạnh BC, AH
c) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của 2 △ ACD và HCE
Cho tam giác ABC vuông tại A có BC bằng 6 cm AC bằng 8 cm Kẻ đường cao AH a,Chứng minh tam giác ABC đồng dạng với tam giác hba chứng minh ah² = HB nhân HC tính độ dài của BC ah phân giác của góc ACB cắt ah tại E cắt d cắt AB tại D tính tỉ số diện tích của tam giác acd và tam giác hce
Cho tam giác ABC vuông tại A có AB = 6cm; AC = 8cm. Kẻ đường cao AH. a) Chứng minh: ABC và HBA đồng dạng với nhau b) Chứng minh: AH2 = HB.HC c) Tính độ dài các cạnh BC, AH d) Phân giác của góc ACB cắt AH tại E, cắt AB tại D. Tính tỉ số diện tích của hai tam giác ACD và HCE
Cho tam giác ABC vuông tại A(góc A=90°),AB=21cm,AC=28cm. Vẽ đường cao AH(H thuộc BC). Tia phân giác của góc A cắt BC tại D. Tính BC,BD,CD và diện tích tam giác AHD
Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K
a) Chứng minh : Tam giác BDA ~ Tam giác KDC
b) Chúng minh : Tam giác DBK ~ Tam giác DAC
c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2
Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh :
a) Tam giác ABH ~ Tam giác ADH
b) HE2 = AE . EC
c) Gọi M là giao điểm của BE và CD . Chứng minh tam giác DBM ~ Tam giác ECM
Bài 3: Cho tam giác ABC vuông tại A . Đường cao AH
a) Chứng minh : Tam giác ABC ~ Tam giác HBA
b) Tính độ dài BC và AH ,biết AB = 6 cm , AC = 8 cm
c) Phân giác góc ACB cắt AH tại E , cắt AB tại D . Tính tỉ số diện tích của hai tam giác ACD và HCE