Cho tam giác ABC vuông tại A (AB < AC).Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên tia đối của tia AB lấy điểm E sao cho AE = AC.
a) Chứng minh : BC = DE.
b) Chứng minh : tam giác ABD vuông cân và BD // CE.
c) Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M. từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N . Chứng minh : NM // AB.
d) Chứng minh : AM = DE/2.
cho tam giác ABC vuông tại A; đg cao AH. Dvà E lần lượt là hình chiếu của H trên AB và AC cm rằng
a) AD*AB=AH bình phương
AD*AB=AE*AC
b)gọi I là trung điểm của BC cm AI vuông góc vs DE
c)M là trung điểm của BH;N là trung điểm của CH. nhận dạng tứ giác MDEN
d)gọi O là giao điểm của AH và DE . tính tỷ số DIỆN TÍCH TAM GIÁC OMN TRÊN DIỆN TÍCH TAM GIÁC ABC
giúp e câu c : chứng minh N là trung điểm AH vs ah
Cho AB và AC là 2 tiếp tuyến của đường tròn tâm O. Vẽ đường kính CD, AD cắt đường tròn (O) tại M (M không trùng D), BM cắt AO tại N.
a) Chứng minh tứ giác AMHC nội tiếp
b) chứng minh HM là đường cao của tam giác BHN
c) Chứng minh N là trung điểm của AH
Cho hình chữ nhật ABCD có AB=5cm , BC=12cm. Vẽ BH vuông góc vói AC tại H và kéo dài cắt AD tại K.
a) Giải tam giác ABC
b) Đường phân giác của góc ABC cắt AC tại M. Tính BM
c) Chứng minh AH . AC = BK . BH
Giúp mình bài này nhé
Cho tam giác ABC có 3 góc nhọn nội tiếp trong (O;R) có đường cao là AD và đường kính là AM; AD cắt (O) tại K
a) chứng minh B, K, M, C là 4 đỉnh của một hình thang cân.
b) Gọi H là điểm đối xứng của K qua BC. Chứng minh H là trực tâm của tam giác ABC
c) BH cắt AC tại E, CH cắt AB tại F. Chứng minh trung điểm I của AH thuộc đường tròn ngoại tiếp tam giác FED. Cho AE=3, CE=4, BH=4. Tính HE.
Mình giải được a và b rồi còn c thì làm mãi không được
cho tam giác ABC cân tại A nội tiếp đường tròn tâm O đường cao AH cắt đường tròn ở D
a)Chứng tỏ AD là đường kính của hình tròn
b)tính số đo góc ACD
c)Tính đường cao AH,bán kính đường tròn biết AC=20cm,BC=24cm
Cho tam giác ABC vuông tại A,AB=21cm,AC=28cm.Kẻ đường cao AH,tia phân giác AD
a)Tính BC,HA,HB,HC
c)tínhBD,CD
BT1: Cho tam giác ABC ( AB< AC) nội tiếp đường tròn tâm O . Ba đường cao AH, BE, CF cắt nhau tại I. Kẻ đường kính AD của đường tròn O, gọi M là trung điểm BC.
a/ Chứng minh: 4 điểm B, F, E, C cùng nằm trên một đường tròn
b/ Chứng minh : EF < BC
c/ Tứ giác BICD là hình gì ? Vì sao ?
d/ Chứng minh : OM = AI / 2
BT2: Cho đường tròn tâm O, điểm A nằm ngoài đường tròn. Từ A vẽ hai đường thẳng cắt đường tròn, đường thứ nhất cắt đường tròn tại M và N ( M nằm giữa A và N ), đường thứ 2 cắt đường tròn tại E và F ( E nằm giữa A và F ) sao cho MN = EF. Kẻ OH vuông góc MN, OK vuông góc EF.
a/ So sánh AH và AK
b/ Chứng minh : AM = AE
c/ Tứ giác MEFN là hình gì ? Vì sao ?
Cho tam giác ABC cân tại A , nội tiếp đường tròn (O) . Đường cao AH cắt đường tròn tại D.
a. cm : AD là đương kính của đường tròn (O)
b. tính số đo góc ACD
c. Cho BC=24cm, AC=20 cm . Tính AH và bán kính đường tròn (O)