a: Xét ΔADC vuông tại A và ΔADI vuông tại A có
AD chung
AC=AI
=>ΔADC=ΔADI
b: Xét ΔBCI có
BA là đườg cao, là trung tuyến
=>ΔBCI cân tại B
c: \(CD=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)
=>\(CG=\dfrac{2}{3}\sqrt{73}\left(cm\right)\)
a: Xét ΔADC vuông tại A và ΔADI vuông tại A có
AD chung
AC=AI
=>ΔADC=ΔADI
b: Xét ΔBCI có
BA là đườg cao, là trung tuyến
=>ΔBCI cân tại B
c: \(CD=\sqrt{8^2+3^2}=\sqrt{73}\left(cm\right)\)
=>\(CG=\dfrac{2}{3}\sqrt{73}\left(cm\right)\)
d) CM : ID + 3/2 DC > BD
Cho tam giác ABC vuông tại A với AB = 3cm, BC= 5cm a) tính độ dài đoạn thẳng AC b) trên tia đối của tia AB, lấy điểm D sao cho AB = AD. Chứng minh tam giác ABC= tam giác ADC, từ đó suy ra tam giác BCD cân c) trên AC lấy điểm E sao cho AE=1/3AC. Chứng minh DE đi qua trung điểm I của BC. d) chứng minh DI + 2/3 DC>DB.
cho tam giác ABC vuông tại A. Trên tia đối của tia AB lấy điểm D sao cho AD=AB a) cho AB =6cm AC=8cm Tính độ dài cạnh BC b)chứng minh tam giác ABC= tam giác ADC từ đó suy ra tam giác CBD cân c) từ A kẻ AH vuong góc BC tại H,AK vuông góc Dc tại K Chứng minh HC=KC d)Chứng minh HK song song BD
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm.
a)Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của BD. C/m tam giác BCD cân.
b)Gọi K là trung điểm của BC, đường thẳng DK cắt AC tại G. Tính độ dài GC.
Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC, lấy điểm D sao cho BM=MD.
a/ CM: tam giác AMD= tam giác BMC=> AD//BC. Trên tia đối của tia AC lấy điểm E sao cho AC=CE
b/ CM: AC=CD
c/ Lấy điểm I sao cho BI=IE, gọi C là trọng tâm. Gọi K là giao điểm của tam giác CDE. CM: DC đi qua I
Cho tam giác ABC vuông tại A
(AB <AC) KẺ AH Vuông góc với BC tại H Trên Tia đối của tia Ha Lấy điểm D sao cho HD bằng HA
a) CM Tam giác ACH =DCH và TAM giác ADC là cân
b) TRên HC lấy điểm E sao cho HE =HB CM AHB =DHE Và E là trục tâm của Tam giác ADC
c) CM AE +CD lớn hơn >BC
Câu 12: Cho tam giác ABC vuông tại C , có AB = 10 cm, AC cm = 6 . Trên tia đối của tia CB lấy D sao cho CD=CB .
a) Tính BC , so sánh góc A và góc B của tam giác ABC
b) Chứng minh tam giác ABD cân tại A.
c) Gọi M là trung điểm của AD , BM cắt AC tại G. Chứng minh GB +2GC>AB
d) Qua C kẻ CN DA / / sao cho N thuộc AB . Chứng minh D, G ,N thẳng hàng .
1. Cho tam giác ABC cân tại A, đường cao AH. Trên tia đối của AH lấy D sao cho: HD=HA. Trên tia đối của CB lấy E sao cho: CE=CB.
a) CM C là trọng tâm của tam giác ADE.
b) Tia AC cắt DE tại M. CM: AE song song HM.
2. Cho tam giác ABC, O là 1 điểm nằm trong tam giác. VẼ BH và CK vuông góc với AO. Cho biết tam giác AOB, BOC và COA có diện tích bằng nhau. CM:
a) BH=CK.
b) O là trọng tâm của tam giác ABC.
3. Cho tam giác ABC cân tại A có AD là đường phân giác.
a) CM: tam giác ABD=ACD.
b) Gọi G là trọng tâm của tam giác ABC. CM: A,D,G thẳng hàng
Tam giác ABC vuông tại A, AB<AC. Trên cạnh AC lấy điểm D sao cho AB=AD. Trên tia đối tia AB lấy điểm E sao cho AE=AC.
a) Cm: Tam giác ABC = Tam giác ADE
b) Cm: ED⊥BC
c) Gọi H là giao điểm tia BD và ED. Cm: HB=HE