b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
b: Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
cho tam giác ABC vuông tại A,đường cao AH.Gọi D và E lần lượt là hình chiếu của điểm H trên AB và AC.Biết BH=4cm,CH=9cm.
a/Tính độ dài AH;
b/Chứng minh rằng AD.AB=AE.AC;
c/Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N.Tính diện tích tứ giác DENM
Cho tam giác ABC vuông tại A có AB<AC,đường cao AH.Gọi M.N lần lượt là hình chiếu của H trên AB,AC
a,Tính độ lớn của góc ACB nếu AB=3,AC=4
b,Chứng minh AB.AH=AC.BH
Cho tam giác ABC có Â vuông, đường cao AH.Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Chúng minh rằng AB.AD=AC.AE=HB.HC
Cho tam giác ABC có AB = 5cm AC= 12cm , BC= 13cm C/minh tam giác ABC vuông b) Tính độ dài đường cao AH c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC C/minh góc AFE = góc ABC Mình cần gấp ạ
Cho tam giác ABC vuông tại A , đường cao AH , AB = 3cm , BC = 5cm
a) giải tam giác ABC
b) gọi E , F , lần lượt là hình chiếu H trên cạnh AB và AC
- TÍnh độ dài AH
- Chứng minh EF = AH
Cho tam giác ABC vuông tại A (AB<AC) đường cao AH. .Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a) CM: DE.BC=AB.AC
b) AD= AH. cos C
Giúp mình với ạ đang cần gấp huhu, không cần vẽ hình nhe
Cho tam giác ABC vuông tại A,đường cao AH.Gọi M,N lần lượt là hình chiếu của H trên AB,AC.Chứng minh HB/HC=(AB/AC)^2
Cho tam giác ABC vuông tại A, đường cao AH.Gọi D, E lần lượt là hình chiếu của H trên AB , AC . Biết rằng BH=4, CH=9
a, Tính độ dài đoạn DE
b,CM AD.AB=AE.AC
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH.Gọi D,E lần lượt là hình chiếu của H trên cạnh AB,AC.
a) Nếu AB=12,AC=16.Tính AH và sin góc BAH.
b) Chứng minh: BD.BA+CE.CA=BC^2-2AH^2.
c) Gỉả sử BC=25, AH=12.Tính BH.