Ta có : \(AB^2=BH.BC\)
\(AC^2=CH.BC\)
Chia vế với vế ta được :
\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)
Ta có : \(AB^2=BH.BC\)
\(AC^2=CH.BC\)
Chia vế với vế ta được :
\(\dfrac{AB^2}{AC^2}=\dfrac{BH.BC}{CH.BC}\Rightarrow\dfrac{AB^2}{AC^2}=\dfrac{BH}{CH}\)
cho tam giác ABC vuông tại A,đường cao AH.gọi D,E lần lượt là hình chiếu của H lên AB và AC.chứng minh: a) \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)
b) \(\frac{AB^3}{AC^3}=\frac{BD}{CE}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M, N lần lượt là hình chiếu của H trên AB,AC.
C/M HB/HC=(AB/AC)2
Cho tam giác ABC vuông tại A ( AB <AC) . Đường cao AH (H BC ).Gọi M và N lần lượt là hình chiếu của H trên AB và AC.
a) Giả sử HB = 3,6cm, HC = 6,4cm. Tính độ dài HA, AC và góc B, góc C
b) Chứng minh: AM.MB + AN.NC=2MN\(^2\)
c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại K. Chứng minh rằng: K là trung điểm của đoạn thẳng BC
Cho tam giác ABC vuông tại A có AB<AC,đường cao AH.Gọi M.N lần lượt là hình chiếu của H trên AB,AC
a,Tính độ lớn của góc ACB nếu AB=3,AC=4
b,Chứng minh AB.AH=AC.BH
cho tam giác ABC vuông tại A đường cao AH .gọi Dvà E lần lượt là hình chiếu của H trên AB AC biết HB=4cm ; HC=9cm. Tính DE
Cho tam giác ABC vuông tại A, đường cao AH
1) Tính AB, AC, AH khi HB= 4 cm, HC=9 cm.
2) Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng DE2 = HB.HC
3) Chứng minh rằng AE.AC=AD.AB
4) Chứng minh rằng BD.BA + AE.AC=AB2
5) Chứng minh rằng Δ AED và Δ ABC đồng dạng
6) Kẻ trung tuyến AM. Chứng minh rằng AM ⊥ DE
Cho tam giác ABC vuông tại A có ah là đường cao
1) chứng minh HB/HC = AB^2 / AC^2
2) gọi I và J lần lượt là hình chiếu của H trên AC;AB Chứng minh AI.AC=AH^2
3) chứng minh tam giác AJI và tam giác ACB đồng dạng và góc AJI = góc ACB
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH\(^2\)
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH
Cho tam giác ABC vuông tại A, đường cao AH. Biết HC = 4cm , HB = 3cm
a) Tính AB , AH
b) Gọi D và E lần lượt là hình chiếu của H trên AB , AC
Chứng minh AD.DB + AE.EC = AH\(^2\)
c) Đường thẳng vuông góc với DE tại E cắt BC tại K.
Chứng minh K là trung điểm của CH