a: Xét ΔABE và ΔADC có
góc ABE=góc ADC
góc BAE=góc DAC
=>ΔABE đồng dạng với ΔADC
b: Xét ΔDAC và ΔDBE có
góc DAC=góc DBE
góc ADC=góc BDE
=>ΔDAC đồng dạng với ΔDBE
=>DA/DB=DC/DE
=>DA*DE=DB*DC
a: Xét ΔABE và ΔADC có
góc ABE=góc ADC
góc BAE=góc DAC
=>ΔABE đồng dạng với ΔADC
b: Xét ΔDAC và ΔDBE có
góc DAC=góc DBE
góc ADC=góc BDE
=>ΔDAC đồng dạng với ΔDBE
=>DA/DB=DC/DE
=>DA*DE=DB*DC
Cho tam giác ABC.AD là phân giác trên tia đối của tia DA lấy điểm E sao cho góc ABE = góc ADC,chứng minh rằng:
A) Tam giác ABE đồng dạng với tam giác ADC
B) DA . DE = DB . DC
C) AD2 = AB . AC – DB . DC
Cho tam giác ABC có AB=6, AC=10, BC=12. Vẽ đường phân giác AD của góc BAC, trên tia đối tia DA lấy điểm I sao cho góc ACI=góc BDA.
a) Tính DB và DC
b) Chứng minh ∆ACI đồng dạng ∆CDI
c)Chứng minh AD^2=AB.AC - DB.DC
Bài 1 : Cho tam giác ABC có AB=6cm ; AC=10cm ; BC=12cm . Vẽ đường phân giác AD của góc A . Trên tia đối của tia DA lấy điểm I sao cho góc ACI = góc BDA
a) Tính DB , DC
b) Chứng minh tam giác ACI đồng dạng với tam giác CDI
c) Chứng minh AD^2=AB.AC-DB.DC
Cho tam giác ABC (AB < AC), đường phân giác trong AD. Trên tia đối của tia DA lấy điểm I sao cho A C I ^ = B D A ^ . Chứng minh:
a) Δ A B D ∽ Δ A I C ; b) Δ A B D ∽ Δ C I D ;
c) A D 2 = A B . A C − D B . D C .
Cho tam giác ABC (AB<AC) đừơng phân giác AD (D thuộc BC). Trên tia đối cuả DA lấy điểm I sao cho góc ACI = góc BDA. Chứng minh rằng. a) -Tam giác ADB đồng dạng tam giác ACI -Tam giác ADB đồng dạng tam giác CDI
b) AD bình phương=AB.AC-DB.DC
Cho tam giác ABC (AB<AC). Trên tia đối của tia BA lấy điểm M, trên tia đối của tia CA lấy điểm N sao cho BM=CN. Gọi D,E,P,Q lần lượt là trung điểm của BC,MN,MC,NB.
a)DQ cắt AM tại J. Chứng minh rằng góc PEQ=góc MJQ
b) DE cắt AN tại I. Chứng minh rằng DE song song với phân giác góc BAC
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy D, trên tia đối của tia CA lấy E sao cho BD=CE
a) Chứng minh rằng: DE // BC.
b) Từ D kẻ DM vuông góc với BC tại M, từ E kẻ EN vuông góc với BC tại N. Chứng minh rằng: DM=EN.
c) Chứng minh rằng: AMN là tam giác cân.
d) Từ B và C kẻ các đường vuông góc với AN và AM, chúng cắt nhau tại I. Chứng minh rằng: AI là tia phân giác của góc BAC.
Cho tam giác ABC vuông tại A (AB < AC), phân giác trong AD (D thuộc cạnh BC). Gọi M là trung điểm của đoạn thẳng BC, trên tia đối của tia DA lấy điểm K sao cho góc KBC = 45 độ, đường thẳng qua A vuông góc với AD cắt KM tại N.
a) Chứng minh rằng tam giác KBC vuông cân
b) Phân giác của góc ABC cắt AC tại I . Gọi E là giao điểm của AC và MN. Chứng minh rằng góc ENC = 45 độ và KI2 = KM.KN
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.