a) HS tự chứng minh.
b) HS tự chứng minh.
c) Từ a, suy ra AB.AC = AD.AI (1)
Từ b, suy ra BD.CD = AD.ID (2)
Từ (1) và (2), ta chứng minh được AD2 = AB.AC- DB.DC
a) HS tự chứng minh.
b) HS tự chứng minh.
c) Từ a, suy ra AB.AC = AD.AI (1)
Từ b, suy ra BD.CD = AD.ID (2)
Từ (1) và (2), ta chứng minh được AD2 = AB.AC- DB.DC
Cho tam giác ABC với độ dài 3 cạnh AB = 3cm, BC = 5cm, AC = 4cm.
a) Chứng minh Δ ABC vuông
b) Trên BC lấy điểm D sao cho BA = BD. Từ D vẽ Dx ⊥ BC, Dx cắt AC tại H
Chứng minh Δ HBA = Δ HBD, suy ra BH là tia phân giác của ABC
c) Tia Dx cắt AB tại I. Chứng minh IH + IB > HD + BH
d) Gọi M là trung điểm IC. Chứng minh ba điểm B, H, M thẳng hàng
Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm D, trên cạnh AC
lấy điểm E sao cho AD = AE. Chứng minh rằng:
a) D đối xứng với E qua AH.
b) Δ ADC đối xứng với Δ AEB qua AH.
Cho Δ ABC có A = 80 độ , B = 60 độ
a, SS các cạnh của tg
b, Trên cạnh BC lấy điểm D sao cho BD = Ba . Tia phân giác của ABC cắt AC tại E
c, Cm : BE> AD
d , Gọi H là giao điểm của BE và AD . Cm : H là trung điểm của AD
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: HBA/ABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.
Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ hai đường cao BD và CE.
a) Chứng minh: ΔABD đồng dạng ΔACE . Suy ra : AB.AE = CA. AD
b) Chứng minh: Δ ADE đồng dạng Δ ABC .
c) Tia DE và CB cắt nhau tại I. Chứng minh: Δ IBE đồng dạng Δ IDC .
d) Gọi O là trung điểm BC. Chứng minh ID.IE= OI^2 - OC^2
Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ hai đường cao BD và CE.
a) Chứng minh: ΔABD đồng dạng ΔACE . Suy ra : AB.AE = CA. AD
b) Chứng minh: Δ ADE đồng dạng Δ ABC .
c) Tia DE và CB cắt nhau tại I. Chứng minh: Δ IBE đồng dạng Δ IDC .
d) Gọi O là trung điểm BC. Chứng minh ID.IE= OI^2 - OC^2
Cho Δ ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Lấy E trên BC sao cho BE = AB. Chứng minh Δ ABD=Δ EBD.
Cho Δ ABC vuông tại A, biết AB = 6cm, BC = 10cm, đường cao AH.
a) CM: Δ ABC ~ Δ HBA
b) Tính tỉ số diện tích: ΔHBAΔABCΔHBAΔABC
c) Đường phân giác góc ABC cắt cạnh AC tại D. Tính DC.
d) Gọi I là giao điểm của AH và BD, K là hình chiếu của điểm C trên đường thẳng BD. CM: góc BIA = góc BAK.
Cho Δ ABC vuông tại A , biết AB = 6cm ; AC = 8cm . Vẽ đường cao AH a) Đường phân giác của góc B cắt AH và AC lần lượt tại I và D . Chứng minh Δ AID cân b) Kẻ HK song song với BD ( K thuộc AC ) . Chứng minh AD ² = DK . DC
Cho tam giác ABC (AB<AC), AD là đường phân giác của góc A(D thuộc BC). Trên tia đối của tia DA lấy điểm I sao cho góc ACI = góc ABD. Chứng minh a, tam giác ABD đồng dạng tam giác ACI b, tam giác CDI cân c,AD.CD=AI.BD