Ta có : \(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}\)
\(\Leftrightarrow\frac{2b.sinA}{sinB}.sinB=b\sqrt{3}\)
\(\Leftrightarrow2b.sinA=b\sqrt{3}\)
\(\Leftrightarrow sinA=\frac{\sqrt{3}}{2}\Rightarrow\widehat{A}=60^0\)
Ta có : \(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}\)
\(\Leftrightarrow\frac{2b.sinA}{sinB}.sinB=b\sqrt{3}\)
\(\Leftrightarrow2b.sinA=b\sqrt{3}\)
\(\Leftrightarrow sinA=\frac{\sqrt{3}}{2}\Rightarrow\widehat{A}=60^0\)
cho tam giác ABC thỏa mãn hệ thức ha=\(\sqrt{p\left(p-a\right)}\)(1). chứng minh rằng tam giác ABC là tam giác cân
cho tam giác ABC thỏa mãn điều kiện: \(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}\)
Chứng minh rằng: \(\widehat{Â}=60^0\)
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)
Cho tam giác ABC chứng minh rằng:
Nếu \(\dfrac{b^3+c^3-a^3}{b+c-a}=a^2\) thì góc A = \(60^o\)
Giúp mình với m.n !!!!!
Cho tam giác ABC. Chứng minh rằng:
Nếu \(\dfrac{b^2-a^2}{2c}=bcosA-acosB\) thì tam giác ABC cân tại C.
Cho tam giác ABC thỏa mãn AB+BC=11 \(\left(AB>BC\right)\) \(\widehat{ABC}=60^{\bigcirc}\) bán kính đường tròn nội tiếp tam giác \(r=\frac{2}{\sqrt{3}}cm\) . Tính độ dài đường cao AH
cho \(\dfrac{\sin A}{\sin B.\cos C}=2\). Chứng minh rằng: tam giác ABC cân
Cho tam giác ABC
a) Biết \(\widehat{A}\) = 90°, \(\widehat{B}\) = 58°, a = 72cm. Tính \(\widehat{C}\), cạnh b, cạnh c và đường cao ha
b) Biết a = 52,1cm, b = 85cm, c = 54cm. Tính các góc A,B,C
c) Biết a = 3, b = 4, c = 6. Tính diện tích của tam giác ABC
Biết a = 8, b = 10, c = 13. Tam giác có góc tù không? Và tính ma của tam giác ABC