I đối xứng với D qua M
I đối xứng với D qua M
B1: Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 8cm. Vẽ đường cao AH, đường tròn tâm O đường kính AH cắt AB tại E và cắt AC tại điểm F.
a) Chứng minh tứ giác AEHF là hình chữ nhật
b) Chứng minh tứ giác BEFC nội tiếp
c) Gọi I là trung điểm của B
C.Chứng minh AI vuông góc với EF
d) Gọi K là tâm của đường tròn ngoại tiếp tứ giác BEF
C.Tính diện tích hình tròn tâm K.
B2: Cho ABC nhọn, đường tròn (O) đường kính BC cắt AB, AC lần lượt tại E và D, CE cắt BD tại H
a) Chứng minh tứ giác ADHE nội tiếp
b) AH cắt BC tại F. chứng minh FA là tia phân giác của góc DFE
c) EF cắt đường tròn tại K ( K khác E). chứng minh DK// AF
d) Cho biết góc BCD = 450 , BC = 4 cm. Tính diện tích tam giác ABC
B 3: cho đường tròn ( O) và điểm A ở ngoài (O)sao cho OA = 3R. vẽ các tiếp tuyến AB, AC với đường tròn (O) ( B và C là hai tiếp tuyến )
a) Chứng minh tứ giác OBAC nội tiếp
b) Qua B kẻ đường thẳng song song với AC cắt ( O) tại D ( khác B). đường thẳng AD cắt ( O) tại E. chứng minh AB2= AE. AD
c) Chứng minh tia đối của tia EC là tia phân giác của góc BEA
d) Tính diện tích tam giác BDC theo R
B4: Cho tam giác ABC nhọn, AB >AC, nội tiếp (O,R), hai đường cao AH, CF cắt nhau tại H
a) Chứng minh tứ giác BDHF nội tiếp? Xác định tâm của đường tròn ngoại tiếp tứ giác đó
b) Tia BH cắt AC tại E. chứng minh HE.HB= HF.HC
c) Vẽ đường kính AK của (O). chứng minh AK vuông góc với EF
d) Trường hợp góc KBC= 450, BC = R. tính diện tích tam giác AHK theo R
B5: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O. Ba đương cao AE, BF, CK cắt nhau tại H. Tia AE, BF cắt đường tròn tâm O lần lượt tại I và J.
a) Chứng minh tứ giác AKHF nội tiếp đường tròn.
b) Chứng minh hai cung CI và CJ bằng nhau.
c) Chứng minh hai tam giác AFK và ABC đồng dạng với nhau
B6: Cho tam giác ABC nhọn nội tiếp đường tròn ( O; R ),các đường cao BE, CF .
a)Chứng minh tứ giác BFEC nội tiếp.
b)Chứng minh OA vuông góc với EF.
cho tam giác ABC nhọn nội tiếp đươgf tròn tâm o .đường cao AD cắt đường tròn tại điểm thứ 2 là M . Kẻ MN vuông góc với đường thẳng AB tại N
a) CM tứ giác MNBD nội tiếp và MA là tia phân giác của góc NMC
b) ND cắt AC tại E . Chứng minh ME vuông góc với AC (ai giúp mình phần b với)
Cho tam giác nhọn ABC nội tiếp đường tròn tâm O, các đường cao AD, BE, CF cắt nhau tại H. Đường thẳng EF cắt (O) tại M và N.
a, Chứng minh các tứ giác BHDF và BFEC nội tiếp
b, Chứng minh AM=AN
c, Chứng minh AM là tiếp tuyến của đường tròn ngoại tiếp tam giác MHD
Cho tam giác ABC nội tiếp trong vòng tròn tâm o ( AB < AC) , đương cao AD và CE cắt nhau tại H.
a. Chứng minh tứ giác AEDC nội tiếp,và OB vuông góc với DE.
b. Kẻ đường kính AK cắt CE tại M .CK cắt AD tại F . Chứng minh :
AH .AF = AM. AK .
c. Gọi I là trung điểm của BC ; EI cắt AK tại N . Chứng minh tứ giác EDNC là hình thang cân .
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho tam giác ABC nhọn nội tiếp (O) . Các đường cao AD, BE , và CF cắt nhau tại H . Đường thẳng EF cắt đường tròn ở I và K a) chứng minh : Tứ giác CDHE nội tiếp đường trònb) Chứng minh : AH . AD = AF . ABc) Kẻ tiếp tuyến Ax, chứng minh: BCEF nội tiếp. Từ đó chứng minh : Ax // IK
Cho tam giác ABC ( AB<AC) nội tiếp đường tròn (O) , bán kính R , đường cao AD,BE,CF của tam giác ABC cắt nhau tại H.
Chứng minh:
1) tứ giác BFHD,BFEC nội tiếp đường tròn
2) FH là tia phân giác của góc DFE và H là tâm đường tròn nội tiếp tam giác DEF
3) Gọi M là trung điểm BC . Chứng minh OM//AD và tứ giác DMEF nội tiếp
4) Gọi N là giao điểm AD và BF , chứng minh 1/HN - 1/HD = 2/AH
5) Gọi K là giao điểm AD và đường tròn (O) , khác A . Chứng minh HK đối xứng qua BC
Cho tứ giác ABCD nội tiếp đường tròn tâm O đường kính AD hai đường chéo AC và BD cắt nhau tại E kẻ EF vuông góc ad a) Chứng minh tứ giác ECDF nội tiếp Xác định tâm I b) Chứng minh CA là phân giác của góc BCF c) Chứng minh tứ giác bcef nội tiếp
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O ). Ba đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh tứ giác ABDE là tứ giác nội tiếp. Xác định tâm S của đường tròn ngoại tiếp tứ giác ABDE.
b) Vẽ đường kính AK của ( O ). Chứng minh : AB×AC = AD×AK
c) Gọi I là trung điểm của HC. Chứng minh ST vuông góc ED.
d) Đường phân giác trong của góc BAC cắt BC tại M và cắt đường tròn ( O ) tại N ( N khác A ). Gọi I là tâm đường tròn nội tiếp tam giác ACM.
Gọi L là giao điểm của đường tròn ( O ) và CL. Chứng minh : N,O,L thẳng hàng.
e) Chứng minh ANKL là hình chữ nhật.