Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tớego

cho tam giác ABC nhọn nội tiếp đươgf tròn tâm o .đường cao AD cắt đường tròn tại điểm thứ 2 là M . Kẻ MN vuông góc với đường thẳng AB tại N

a) CM tứ giác MNBD nội tiếp và MA là tia phân giác của góc NMC

b) ND cắt AC tại E . Chứng minh ME vuông góc với AC (ai giúp mình phần b với)

 

Nguyễn Lê Phước Thịnh
17 tháng 12 2023 lúc 11:24

a: Xét tứ giác MNBD có

\(\widehat{BDM}+\widehat{BNM}=90^0+90^0=180^0\)

=>MNBD là tứ giác nội tiếp

=>\(\widehat{NBD}+\widehat{NMD}=180^0\)

mà \(\widehat{NBD}+\widehat{ABC}=180^0\)(hai góc kề bù)

nên \(\widehat{NMD}=\widehat{ABC}\left(1\right)\)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{AMC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{AMC}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{NMD}=\widehat{AMC}\)

=>\(\widehat{NMA}=\widehat{CMA}\)

=>MA là phân giác của góc NMC

b: Ta có: NBDM là tứ giác nội tiếp

=>\(\widehat{DBM}=\widehat{DNM}\)

=>\(\widehat{MBC}=\widehat{ENM}\left(3\right)\)

Xét (O) có

\(\widehat{MBC}\) là góc nội tiếp chắn cung MC

\(\widehat{MAC}\) là góc nội tiếp chắn cung MC

Do đó: \(\widehat{MBC}=\widehat{MAC}\left(4\right)\)

Từ (3) và (4) suy ra \(\widehat{ENM}=\widehat{MAC}\)

=>\(\widehat{ENM}=\widehat{EAM}\)

=>ANME là tứ giác nội tiếp

=>\(\widehat{AEM}+\widehat{ANM}=180^0\)

=>\(\widehat{AEM}=90^0\)

=>ME\(\perp\)AC


Các câu hỏi tương tự
Trần Mai Ngọc
Xem chi tiết
Mèo con dễ thương
Xem chi tiết
Nguyên Thu
Xem chi tiết
nguyen van thang
Xem chi tiết
Nguyễn Phúc Thiên
Xem chi tiết
Đào Thu  Hương
Xem chi tiết
khánh hiền
Xem chi tiết
Xi Rum
Xem chi tiết
Ngô Minh Nhật 9/8
Xem chi tiết