Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH đồng dạng với ΔBEC
=>\(\dfrac{BD}{BE}=\dfrac{BH}{BC}\)
=>\(BH\cdot BE=BD\cdot BC\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH đồng dạng với ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CH\cdot CF=CD\cdot CB\)
ΔEBC vuông tại E
mà EI là đường trung tuyến
nên \(BC=2\cdot EI\)
=>\(BC^2=4\cdot EI^2\)
\(BH\cdot BE+CH\cdot CF\)
\(=BD\cdot BC+CD\cdot BC\)
\(=BC^2=4\cdot IE^2\)