Cho tam giác ABC nhọn có 3 đường cao AD,BE,CF cắt nhau tại H.Từ B kẻ tia Bx vuông góc với BA, từ C kẻ tia Cy vuông góc với CA. Gọi giao của Bx và Cy là K
1 tứ giác BHCK là hình gì? Tại sao?
2 chứng minh tgiac HAB đồng dạng vs tgiac HED
Cho tam giác ABC nhọn có hai đường cao BE và CF cắt nhau tại
H (E thuộc cạnh AC, F thuộc cạnh AB). Qua B vẽ Bx vuông góc với AB, qua C vẽ Cy vuông góc AC, Bx cắt Cy tại D.
a) Chứng minh tứ giác BHCD là hình bình hành.
b) Gọi M là trung điểm của BC. Chứng minh H, M, D thẳng hàng.
c) Gọi O là trung điểm AD. Chứng minh OB = OC.
d) Chứng minh OA=OB=OC=OD
Cho ∆ ABC nhọn. Đường cao AD, BE, CF cắt nhau tại H. Vẽ tia Bx vuông góc với tia AB, tia Cy vuông góc với tia AC. Biết Bx và Cy cắt tại M. a) Chứng minh BHCN là hình bình hành b) Gọi OIK theo thứ tự là trung điểm của AM, BC, AC. Chứng minh 3 điểm thẳng hàng c) Chứng minh ∆OIK ~ ∆HAB
Cho tam giác ABC. Các đường cao BH và CK cắt nhau tại E. Qua B kẻ tia Bx vuông góc với AB; qua C kẻ tia Cy vuông góc với AC. Bx giao với Cy tại D.
a) Tứ giác BCDE là hình gì? Chứng minh
b) Gọi M là trung điểm của BC. Chứng minh M là trung điểm của DE.
c) Tam giác ABC thỏa mãn điều kiện gì thì DE đi qua A?
cho tam giác nhọn ABC, trực tâm H, trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ các tia Bx vuông góc với AB, Cy vuông góc với CA, chúng cắt nhau tại D.
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi E là điểm sao cho BC là đường trung trực của EH. Chứng minh rằng Tứ giác BCDE là hình thang cân.
c) BD cắt EH TẠI K , Tam giác ABC phải có điều kiện gì để Tứ giác HCDK là hình thang cân
cho tam giác nhọn ABC, trực tâm H, trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ các tia Bx vuông góc với AB, Cy vuông góc với CA, chúng cắt nhau tại D.
a) Tứ giác BHCD là hình gì? Vì sao?
b) Gọi E là điểm sao cho BC là đường trung trực của EH. Chứng minh rằng Tứ giác BCDE là hình thang cân.
c) BD cắt EH TẠI K , Tam giác ABC phải có điều kiện gì để Tứ giác HCDK là hình thang cân
Cho tam giác ABC nhọn, hai đường cao AE, AF cắt nhau tại H. Kẻ Bx và Cy lần lượt vuông góc với AB và AC, Bx cắt Cy tại A. Gọi M là trung điểm của BC
1. Chứng minh AH vuông góc BC và BHCD là hình bình hành
2. Gọi O là trung điểm của AD, chứng minh H, M, D thẳng hàng và AH=2OM
3. Gọi G là trọng tâm của tam giác ABC, chứng minh GH=2GO
Giúp mình nha, thanks ^^
Cho tam giác nhọn ABC, trực tâm H, trên nửa mặt phẳng bờ BC không chứa điểm A. Vẽ các tia Bx vuông góc với AB, Cy vuông góc với CA, chúng cắt nhau tại D. a) Tứ giác BHCD là hình gì? Vì sao? b) Gọi E là điểm sao cho BC là đường trung trực của EH. Chứng minh rằng Tứ giác BCDE là hình thang cân. c) BD cắt EH TẠI K , Tam giác ABC phải có điều kiện gì để Tứ giác HCDK là hình thang cân.Gíup e phần C với ạ
Câu 17. Cho tam giác ABC nhọn (AB<AC), đường cao BE và CF cắt nhau tại H. Qua C, D kẻ các đường thẳng vuông góc với AC, AD cắt nhau tại K.
a) Tứ giác BHCK là hình gì?
b) Gọi M là trung điểm của BC. Chứng minh H, M, K thẳng hàng.
c) Từ H kẻ HG vuông góc với BC (G thuộc BC).
Lấy I thuộc tia đối của tia GH. Chứng minh: BCKI là hình thang cân.