a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Bài 5: Cho tam giác ABC có AB<AC. Kẻ AD là tia phân giác của góc BAC (D thuộc cạnh BC). Trên cạnh AC lấy điểm E sao cho AE = AB.
a) Chứng minh: góc ABD = góc AED
b) Trên tia đối của tia BA lấy điểm F sao cho BF= EC. Chứng minh ∆ BDF = ∆ EDC
c) Chứng minh ba điểm E, D, F thẳng hàng.
d) Chứng minh AD là đường trung trực của BE.
e) Chứng minh BE // FC
Nhờ mn ạ!
Cho tam giác ABC có AB < AC. Tia phân giác của góc BAC cắt cạnh BC tại D. Trên cạnh AC lấy E sao cho AE = AB.
a) Chứng minh tam giác ABD=AED
b) Tia ED cắt AB tại F, chứng minh tam giác BDF=EDC
c) Chứng minh: BE//FC
d) Chứng minh: BD<DC
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Bài 6: Cho tam giác ABC có AB < AC kẻ tia phân giác AD của góc BAC. Trên cạnh AC lấy
điểm E sao cho AE = AB. Trên tia AB lấy điểm F sao cho AF = AC. Chứng minh rằng:
a) Tam giác ADF= Tam giác ADC
b) Chứng minh ba điểm E, F, D thẳng hàng
c) Chứng minh AD vuông góc với CF
Cho tam giác ABC vuông tại B. Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm E sao cho AE = AB. Chứng minh rằng
a) tam giác ABD = tam giác AED
b) Chứng minh BD nhỏ hơn CD
c) AD là đường trung trực của đoạn thẳng BE
Giúp mình với!
Cho tam giác ABC vuông tại A, vẽ BD là tia phân giác của ABC (D thuộc AC. Trên cạnh BC lấy điểm E sao cho BE=BA. Gọi I là giao điểm của BD và AE. a) Chứng minh: tam giác ABD= tam giác EBD. b) Chứng minh: DE=AD và DE vuông góc BC.
Bài 1: Cho tam giác ABC có AB=AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AE=AD. Gọi H là giao điểm của BE và CD. Chứng minh
a) BE=CD
b) Tam giác BCD= tam giác CBE.
c) AH là tia phân giác góc BAC
Bài 2: Cho tam giác AC có ba góc nhọn, gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD=MB.
a) Chứng minh :tam giác AMB = tam giác CMD
b) Chứng minh: AB // CD
c) Gọi E là trung điểm BC. Tia DE cắt AB tại I. Chứng minh : tam giác BEI = tam giác CED
d) Chứng minh AI= 2CD
cho tam giác ABC vuông tại A có AB<AC. Vẽ tia AD là tia phân giác của góc BAC (D\(\in\)BC). Trên AC lấy điểm E sao cho AB=AE
a)Chứng minh rằng: tam giác ABD = tam giác AED
b)tia ED cắt AB tại F . chứng minh AC=DF
c) gọi G là trung điểm của DF; AD cắt CF tại H và cắt CG tại I chứng minh DI=2IH
Bài 1: Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, gọi I là giao điểm của AH với DE. Kẻ DM vuông góc với IH, EL vuông góc với IH. Chứng minh:
a) Tam giác HBD= tam giác MAD
b) Tam giác HCA= tam giác LEA
c) ID=IE
Bài 2: Cho tam giác ABC có AB>AC. Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Gọi I là giao điểm của đường trung trực của BC và AD. Chứng minh:
a) Tam giác AIB= tam giác DIC
b) AI là tia phân giác của góc BAC
c) Kẻ IE vuông góc với AB. Chứng minh AE=\(\frac{1}{2}\) AD