Cho tam giác ABC có AB=4, AC = 5 , BAC =120°. G là trọng tâm của tam giác ABC, điểm E thỏa mãn vector AE=2/3 vector EC
a) Biểu diễn BE theo AB,AC.
b) Tìm tập hợp điểm I thỏa mãn đẳng thức vec tơ |IA+IG|=|IA–IG|.
c) M là một điểm khác G thỏa(GC-GB)(MA+MB+MC)=0. Chứng minh MG vg BC.
vector het nha
Cho tam giác ABC trọng tâm G.gọi M là trung điểm của AG a) tính 4 vector MA + vector MB + vector MC b) tính vector AG.vector BC
Cho hnc ABCD có AB=a,AD=2a.Gọi M là trung điểm của vector AB,N là điểm trên cạnh AD. Sao cho vector AD = k vector AN .tìm CM vuông góc với BN
Cho tam giác ABC, điểm M thuộc cạnh AB sao cho 3AM = AB và N là trung điểm của AC. Tính M N → theo A B → và A C → .
A. M N → = 1 2 A C → + 1 3 A B → .
B. M N → = 1 2 A C → − 1 3 A B → .
C. M N → = 1 2 A B → + 1 3 A C → .
D. M N → = 1 2 A C → − 1 3 A B → .
Cho tam giác ABC có M là trung điểm AB, N là điểm trên cạnh AC sao cho AN = 2 NC. Gọi K là trung điểm MN. Hãy phân tích vectơ AK theo vectơ AB và vectơ AC.
1.Cho tam giác ABC với BC=a, CA=b, AB=c. Tìm điểm I sao cho: a nhân vector IA + b nhân vector IB +c nhân vector IC= vector 0.
2.Cho tam giác ABC, đường tròn (I) nội tiếp tam giác tiếp xúc với các cạnh BC, CA, AB lần lượt tại M, N, P. Chứng minh rằng:
a nhân vector IM +b nhân vector IN +c nhân vector IP=vector 0.
Cứu em với mai kiểm tra rồi.
cho tam giác ABC,M N lần lượt là trung điểm AB và BC. F thuộc AC: AF=2FC, I thuộc EF: 4EI=3FI.Hãy biểu diễn vecto AI theo 2 vecto AE và ÀF
Cho tam giác abc và hai điểm D và E
dựng hình và xác định điểm N thỏa :
a) vector NA trừ 3 lần vector NB bằng vector 0
b) vector NA + vector NB + vector NC = vector AB+ vector AC
c) 2 lần vector NA trừ 3 lần vector NB cộng 4 lần vector NC bằng vector 0
d) vector NA cộng vector NB cộng vector NC cộng 3 lần vector ND cộng vector NE bằng vector 0
Cho tam giác ABC có AB = 5, BC = 6 và AC = 9. Gọi M là trung điểm của BC, N là điểm thuộc cạnh AC sao cho AC = 3NC. Tính tích vô hướng \(\overrightarrow{AM}.\overrightarrow{BN}\).