Tam giác ABC, trọng tâm G. M, N là trung điểm AB, BC. I, J sao cho \(2\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0}\) và \(\overrightarrow{JA}+5\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\)
a) M, N, J thẳng hàng
b) J là trung điểm BI
Cho tam giác ABC có trọng tâm G. Gọi I,J là các điểm thoã mãn: \(\overrightarrow{IA}-\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\), \(\overrightarrow{JA}\)+\(\overrightarrow{JB}-3\overrightarrow{JC}=\overrightarrow{0}\)
a)xác dịnh các điểm I,J
b)CM: I,B,G thẳng hàng
c) CM: IJ song song AC
Cho tam giác ABC. Tìm điểm thỏa mãn
a)\(2\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\)
b)\(\overrightarrow{KA}+2\overrightarrow{KB}+\overrightarrow{KC}=\overrightarrow{BC}\)
c)\(3\overrightarrow{LA}-\overrightarrow{LB}+2\overrightarrow{LC}=\overrightarrow{0}\)
d)\(\overrightarrow{JA}-\overrightarrow{JB}-2\overrightarrow{JC}=\overrightarrow{0}\)
e)\(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}=2\overrightarrow{BC}\)
Cho \(\Delta ABC\) điểm M thỏa mãn : \(\overrightarrow{MB}=-\overrightarrow{2MC}\)
a, G là trọng tâm tam giác ABC , H đối xứng với B qua G
CM: \(\overrightarrow{AH}=\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}\)
\(\overrightarrow{CH}=\frac{-1}{3}\left(\overrightarrow{AB}+\overrightarrow{AC}\right)\)
b. N là trung điểm của BC . CM \(\overrightarrow{NH}=\frac{1}{6}\overrightarrow{AC}-\frac{5}{6}\overrightarrow{AB}\)
Cho 3 điểm A,B,C và 3 số thực a,b,c có \(a+b+c\ne0\) . Tìm tập hợp J sao cho : \(a\overrightarrow{JA}+b\overrightarrow{JB}+c\overrightarrow{JC}=\overrightarrow{0}\)
Cho tam giác ABC.Gọi I là điểm đối xứng của trọng tâm G qua B.
a, Chứng minh \(\overrightarrow{IA}-5\overrightarrow{IB}+\overrightarrow{IC}=\overrightarrow{0}\)
b, Đặt \(\overrightarrow{AG}=\overrightarrow{a},\overrightarrow{AI}=\overrightarrow{b}\) .Tính \(\overrightarrow{AB};\overrightarrow{AC}\) theo \(\overrightarrow{a},\overrightarrow{b}\)
Cho tam giác ABC có G là trọng tâm, I là trug điểm AB, M thuộc cạnh AB sao cho \(\overrightarrow{MA}+3\overrightarrow{MB}=0\).
a, CMR; \(\overrightarrow{MC}+2\overrightarrow{MI}=3\overrightarrow{MG}\)
b, Giả sử điểm N t/m: \(\overrightarrow{AN}=x\overrightarrow{AC}\). Tìm x để M,N,G thẳng hàng
Cho hbh ABC tâm O. M, N là trung điểm AB, CD. Lấy P sao cho \(\overrightarrow{OP}=-\frac{1}{3}\overrightarrow{OA}\)
a) \(3\overrightarrow{AP}-2\overrightarrow{AC}=\overrightarrow{0}\)
b) B, P ,N thẳng hàng
Cho \(\Delta ABC\) có E, I lần lượt là trung điểm của BC và AB. Gọi D, J, K là các điểm thõa mãn \(\overrightarrow{BE}=2\overrightarrow{BD}\), \(\overrightarrow{AJ}=\frac{1}{2}\overrightarrow{JC}\), \(\overrightarrow{IK}=m\overrightarrow{IJ}\).
Tìm m để A, K, D thẳng hàng.