a) Xét \(\Delta ABM\)và \(\Delta ACM\)có :
AB = AC(gt)
AM chung
BM = CM(gt)
=> \(\Delta ABM=\Delta ACM\left(c.c.c\right)\)
b) Ta có \(\Delta ABM=\Delta ACM\)(theo câu a)
=> \(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)
=> AM là tia phân giác của \(\widehat{BAC}\)
c) Xét \(\Delta ABM\)và \(\Delta CDM\)có :
AM = CM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
BM = DM(gt)
=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)
=> \(\widehat{ABM}=\widehat{CDM}\)(hai góc so le trong)
=> AB //CD