a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
Xét ΔADF và ΔEDC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=CE
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: DA=DE
Xét ΔADF và ΔEDC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
Suy ra: AF=CE
Cho △ABC có A=\(90^o\). Trên cạnh BC lấy điểm E sao cho BE=BA. Tia phân giác của B cắt AC tại D.
a) CM: ΔABD=ΔEBD và DE vuông góc BC.
b) gọi F là giao điểm của AB và DE. CM: AF=CE.
c) Gọi I là trung điểm của CF. CM: B,D,I thẳng hàng.
d) CM: BAE= EAC + ECA.
Cho ABC có 0 A 90 và AB < AC. Tia phân giác của góc B cắt cạnh AC tại D. Trên BC lấy điểm E sao cho BE = BA. a) Chứng minh: ABD EBD . b) Kéo dài ED và BA, chúng cắt nhau tại F. Chứng minh: AF = CE. c) Gọi M là trung điểm của đoạn thẳng CF. Chứng minh FBM CBM và ba điểm B, D, M thẳng hàng.
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC tại E. Trên cạnh BC lấy D sao cho BD=BA. a) chứng minh tam giac BAE= tam giac BDE c) CB vuông góc với DE c) gọi giao điểm của DE và AB là F. Gọi I là trung điểm của đoạn thằng FC. Chứng minh B,E,I thẳng hàng
Bài 5(3,5 điểm) Cho tam giác ABC có 𝐴 = 90°. Trên cạnh BC lấy điểm E sao cho BE =
̂
BA. Tia phân giác của 𝐴𝐵𝐶 cắt AC tại D
a) Chứng minh ∆𝐴𝐵𝐷 = ∆𝐸𝐵𝐷 và DE ⊥ BC
b) Gọi F là giao điểm của AB và DE. Chứng minh AF = CE
c) Gọi I là trung điểm của CF. Chứng minh ba điểm B, D, I thẳng hàng.
mik cần rất gấp
ho tam giác ABC có A bằng 90 độ trên cạnh BC lấy điểm E sao cho be = ba tia phân giác của góc B cắt AC tại D.a,chứng minh tam giác ABD=tam giác EBD và DE vuông góc với BC.b, gọi F là giao điểm của AB và DE. chứng minh AF=CE.c,gọi I là trung điểm của CF,chứng minh điểm B,I,D thẳng hàng.d,chứng minh góc BAE=góc EAC+góc ECA
Cho tam giác △ABC vuông tại A. Tia phân giác của góc B cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BE = BA.
a) Chứng minh: △ABD = △EBD
b) Chứng minh: BD ⊥ AE
c) Gọi F là giao điểm của BA và ED. Chứng minh: AF = CE.
d) Gọi I là trung điểm của CF. Chứng minh ba điểm B, D, I thẳng hàng.
giúp mình nhé, tuần sau mình thi rồi
1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.
a. Chứng minh: ∆BAD = ∆BED
b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE
c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC
2.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D.
a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC
b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.
c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.
3.
Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.
a.Chứng minh: ∆ABE = ∆MBE.
b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,
c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC
4
Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.
a) Chứng minh ∆ABM = ∆ACM
b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.
c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng
d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.
Cho tam giác ABC cân tại A. Trên tia đối của tia BA lấy điểm D trên tia đối của tia CA lấy điểm E sao cho BD = CE, Gọi I là giao điểm của BE và CD.
a) Chứng minh IB = IC, ID = IE.
b) Chứng minh DE // BC.
c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, M, I thẳng hàng.