a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE
a: Xét tứ giác BEDC có
góc BEC=góc BDC=90 độ
=>BEDC là tứ giác nội tiếp
=>góc AED=góc ACB
mà góc A chung
nên ΔAED đồng dạng với ΔABC
b: góc xAC=góc ABC
góc ABC=góc ADE
=>góc xAC=góc ADE
=>Ax//DE
cho tam giác ABC có 3 góc nhọn nội tiếp .đường tròn tâm <o>kẻ các đường cao BD,CE cắt nhau tại H
a/chứng minh BCDE và ADHE là tứ giác nội tiếp
b/chứng minhAD.AC=AE.AB
c/kẻ tiếp tuyến Ax của đường tròn ngoại tiếp tam giác ABC.chứng minh rằng Ax // ED
d/gọi F la điểm đối xứng với H qua BC .chứng minh rằng F nằm trên đường tròn tâm O
Cho tam giác abc có các góc nhọn nội tiếp đường tròn (o). Hai đường cao Bd và CE cắt nhau tại H. a) Chứng minh: Các tứ giác ADHE, BEDC nội tiếp. b) Chứng minh: Góc EAH = Góc ECB c) Từ A kẻ tiếp tuyến xy với đường tròn. Chứng minh: xy//DE
Cho tam giác ABC .Nội tiếp đường trong tâm O các đường cao BD,CE cắt nhau tại H . Cm tứ giác AEHD , BEDC nôi tiếp
Kẻ tiếp tuyến Ax đường tròn tâm O chứng mình : Ax // DE
Kẻ Đường kính BK của đường tròn O hạ CP vuông góc BK . Chứng minh CP= DE
Cho tam giác ABC nội tiếp đường tròn (O), các đường cao BD,CE
Chứng minh: ∆ABE \(\sim\)∆ABC
Kẻ tiếp tuyến Ax với (O). Chứng minh Ax // DE
Vẽ đường kính BOK. Gọi H là chân đường vuông góc kẻ từ C đến BK.Chứng minh rằng DE = CH
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn 0. Kẻ các đường cao AF và CE của tam giác ABC cắt nhau tại H:
a) Chứng minh tứ giác AEFC nội tiếp đường tròn.
b) Kẻ đường kính AK của đường tròn 0. Chứng minh tam giác ABK đồng dạng với tam giác AFC
Cho tam giác ABC nhọn nội tiếp trong đường tròn tâm O. Các đường cao BD và CE của tam giác cắt nhau tại H. Chứng minh rằng rằng:
A) Tứ giác BCDE nội tiếp đường tròn, từ đó suy ra góc BCD = góc AED
B) Kẻ đường kính AK, chứng minh AB.BC = AK.BD
C) Từ điểm O kẻ OM vuông góc với BC Chứng minh H, K, M thẳng hàng
Cho tam giác ABC có 3 góc nhọn nội tiếp đường tròn ( O , R ) . Các đường cao BK và CD cắt nhau tại H . Nối D với K
a) Tìm các tứ giác nội tiếp trong hình
b) Kẻ tiếp tuyến Ax với ( O ) . Chứng minh Ax song song với DK
c) Kẻ AH cắt BC tại M . Chứng minh KB là tia phân giác của góc DKM
d) Kẻ AO cắt đường tròn tại điểm F . Chứng minh BF là hình bình hành
e) Biết AH = 6 , BC = 8 . Tìm R
1.Cho tam giác ABC nhọn. Kẻ các đường cao BD, CE cắt nhau tại H. Chứng mình rằng: a,AEHD là tứ giác nội tiếp b,BEDC là tứ giác nội tiếp. Tìm tâm đường tròn ngoại tiếp c, Góc EBD=ECD d,AH vuông góc với BC
2.Cho tam giác ABC có 3 góc nhọn. Các đường cao BM và CN cát nhau tại I. Chứng minh rằng: a,AMIN là một tứ giác nội tiếp b, Góc NAI=NMI c,AI cắt BC tại H. Chứng minh HA là tia phân giác của góc NHM
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn tâm O . Hai đường cao BD và CE của tam giác ABC cắt nhau tại H, đường thẳng BD cắt đường tròn (O) tại điểm thứ hai P , đường thẳng CE cắt đường tròn (O) tại điểm thứ hai Q. Chứng minh rằng:
1) BEDC là tứ giác nội tiếp,
b) HQ.HC = HP.HB
3) DE // PQ