`@` `\text {Ans}`
`\downarrow`
`a,`
Vì `\Delta ABC` cân tại A
`-> \text {AB = AC,}` $\widehat {B} = \widehat {C}$
Vì `\text {AH}` là đường cao
`-> \text {AH} \bot \text {BC}`
`->` $\widehat {AHB} = \widehat {AHC} = 90^0$
Xét `2 \Delta` vuông `AHB` và `AHC`:
`\text {AB = AC}`
$\widehat {B} = \widehat {C}$
`=> \Delta AHB = \Delta AHC (ch-gn)`
`b,`
Vì `\Delta AHB = \Delta AHC (a)`
`-> \text {HB = HC (2 cạnh tương ứng)}`
`-> \text {H là trung điểm của BC}`
Hoặc bạn có thể dùng cách này (nếu đã học về tính chất của `\Delta` cân đối với các đường trong `\Delta`)
Vì `\Delta ABC` cân tại A.
Mà `\text {AH}` là đường cao
`@` Theo tính chất của `\Delta` cân với các đường trong `\Delta`
`-> \text {AH cũng là đường trung tuyến}`
`-> \text {H là trung điểm của BC}`
`c,`
Vì `\Delta AHB = \Delta AHC (a)`
`->` $\widehat {BAH} = \widehat {CAH} (\text {2 góc tương ứng})$
`-> \text {AH là tia phân giác của} \Delta ABC`
Hoặc bạn có thể dùng cách này (nếu đã học về tính chất của `\Delta` cân đối với các đường trong `\Delta`)
Vì `\Delta ABC` cân tại A.
Mà `\text {AH}` là đường cao
`@` Theo tính chất của `\Delta` cân với các đường trong `\Delta`
`-> \text {AH cũng là đường phân giác}`
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
c: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác