a:
ΔABC cân tại A
=>góc ABC=góc ACB=(180-34)/2=146/2=73 độ
Xét ΔABC có BC/sinA=AB/sinC=AC/sinB=2R
=>BC/sin34=8/sin73
=>\(BC\simeq4,68\left(cm\right)\)
b: Xét ΔADC có \(cosCAD=\dfrac{AC^2+AD^2-CD^2}{2\cdot AC\cdot AD}\)
=>\(8^2+10.6^2-CD^2=2\cdot8\cdot10.6\cdot cos42\)
=>\(CD\simeq7,09\left(cm\right)\)
Xét ΔACD có
\(\dfrac{AC}{sinADC}=\dfrac{CD}{sinCAD}\)
=>8/sinADC=7,09/sin42
=>\(sinADC\simeq0,76\)
=>\(\widehat{ADC}\simeq49^0\)
c:
góc DAB=góc DAC+góc BAC
=42+34
=76 độ
Kẻ BH vuông góc AD
=>BH=d(B;AD)
Xét ΔBHA vuông tại H có
sinHAB=BH/BA
=>BH/8=sin76
=>\(BH\simeq7,76\left(cm\right)\)