Cho số phức z=a+bi, a,bÎR. Điểm biểu diễn của z trên mặt phẳng tọa độ thuộc dải giới hạn bởi hai đường thẳng y = -2 và y = 2 như hình vẽ bên thì điều kiện của a và b là:
A. - 2 ≤ a ≤ 2 b ∈ R
B. a ≤ 2 b ≥ - 2
C. - 2 ≤ a ≤ 2 - 2 ≤ b ≤ 2
D. a ∈ R - 2 ≤ b ≤ 2
Cho số phức z = a + b i ; a , b ∈ ℝ Để điểm biểu diễn của z trên mặt phẳng tọa độ thuộc dải giới hạn bởi hai đường thẳng x = -3 và x = 3 như hình vẽ bên thì điều kiện của a và b là:
A. a ≤ - 3 b ≤ - 3
B. a ≤ 3 b ≥ - 3
C. a ≥ 3 b ≥ 3
D. - 3 ≤ a ≤ 3 b ∈ ℝ
Cho số phức z=a+bi, a,bÎR. Điểm biểu diễn z thuộc dải giới hạn bởi hai đường thẳng y = -5 và y = 5 như hình vẽ bên. Tìm điều kiện của a và b.
A. - 5 ≤ a ≤ 5 - 5 ≤ b ≤ 5
B. - 5 ≤ a ≤ 5 b ∈ R
C. a ∈ R - 5 ≤ b ≤ 5
D. a ≤ 5 b ≥ - 5
Cho số phức z = a + b i , a , b ∈ R . Điểm biểu diễn của z trên mặt phẳng tọa độ thuộc hình tròn tâm O bán kính R = 2 như hình vẽ bên thì điều kiện của a và b là
A. - 2 ≤ a ≤ 2 - 2 ≤ b ≤ 2
B. a 2 + b 2 ≤ 4
C. a 2 + b 2 > 4
D. a < - 2 ; b > 2
Cho số phức z=a+bi, a,b ÎR. Tìm điều kiện của a và b để điểm biểu diễn z thuộc hình tròn tâm O bán kính R = 3 như hình vẽ bên
A. a 2 + b 2 > 9
B. - 3 ≤ a ≤ 3 - 3 ≤ b ≤ 3
C. a 2 + b 2 ≤ 9
D. a < - 3 b > 3
Cho hai số phức z = a + bi ; a , b ∈ ℝ . Có điểm biểu diễn của số phức z nằm trong dải − 2 ; 2 (hình 1) điều kiện của a và b là: a ≥ 2 b ≥ 2 a ≤ − 2 b ≤ − 2 − 2 < a < 2 , b ∈ ℝ a , b ∈ − 2 ; 2
A. a ≥ 2 b ≥ 2
B. a ≤ − 2 b ≤ − 2
C. − 2 < a < 2 , b ∈ ℝ
D. a , b ∈ − 2 ; 2
Số phức z = a + b i ( a , b ∈ R ) có điểm biểu diễn như hình vẽ bên. Tìm a, b.
A.a = -4, b = 3
B. a = 3, b = -4
C. a = 3, b = 4
D. a = -4, b = -3
Cho số phức z thỏa mãn z - 2 + i z ¯ - 2 - i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ - 2 + 3 i là đường tròn có tâm I(a;b) và bán kính c. Giá trị của a+b+c bằng
A. 17
B. 20
C. 10
D. 18
Cho số phức z thỏa mãn z − 2 + i z ¯ − 2 − i = 25 . Biết tập hợp các điểm M biểu diễn số phức w = 2 z ¯ − 2 + 3 i là đường tròn tâm I a ; b và bán kính c. Giá trị của a + b + c bằng
A. 10
B. 18
C. 17
D. 20