Xác định tất cả các số thực m để phương trình
z 2 - 2 z + 1 - m = 0 có nghiệm phức z thỏa mãn z = 2 .
A. m = 1 ; m = 9 .
B. m = - 3
C. m = - 3 ; m = 1 ; m = 9 .
D. m = - 3 ; m = 9
Gọi M là điểm biểu diễn số phức x thỏa mãn ( 1 − i ) z − 1 + 5 i = 0 . Xác định tọa độ của điểm M.
A. M = (–2; 3)
B. M = (3;–2)
C. M = (–3;2)
D. M = (–3;–2)
Gọi M là điểm biểu diễn số phức x thỏa mãn (1-i)z-1+5i=0. Xác định tọa độ của điểm M
A. M(3; -2)
B. M(-2; 3)
C. M(-3; 2)
D. M(-3; -2)
Một học sinh giải bài toán “Tìm tất cả các giá trị thực của tham số m sao cho hàm số y = m x 3 + m x 2 + m − 2 x + 10 đồng biến trên i” theo các bước như sau:
Bước 1: Hàm số xác định trên i, và y ' = 3 m x 2 + 2 m x + m − 2
Bước 2: Yêu cầu bài toán tương đương với y ' > 0, ∀ x ∈ ℝ ⇔ 3 m x 2 + 2 m x + m − 2 > 0, ∀ x ∈ ℝ
Bước 3: ⇔ a = 3 m > 0 Δ ' = 6 m − 2 m 2 < 0 ⇔ m < 0 m > 3 m > 0
Bước 4: ⇔ m > 3. Vậy m>3
Hỏi học sinh này đã bắt đầu sai ở bước nào?
A. Bước 2
B. Bước 3
C. Bước 1
D. Bước 4
Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng P : x + 2 y - z + 3 = 0 và Q : x - 4 y + m - 1 z + 1 = 0 với m là tham số. Tìm tất cả các giá trị của tham số thực m để mặt phẳng (P) vuông góc với mặt phẳng (Q)
A. m = -6
B. m = -3
C. m = 1
D. m = 2
Cho hai số phức z; ω thỏa mãn z - 1 = z + 3 - 2 i ; ω = z + m + i với m ∈ R là tham số. Giá trị của m để ta luôn có ω ≥ 2 5 là
A. m ≥ 7 m ≤ 3
B. m ≥ 7 m ≤ - 3
C. - 3 ≤ m < 7
D. 3 ≤ m ≤ 7
Cho a, b, x, y, z là các số phức thỏa mãn: a 2 - 4 b = 16 + 2 i , x 2 + a x + b + z = 0 , y 2 + a y + b + z = 0 , x - y = 2 3 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của z . Tính M + m
A. M + m = 10
B. M + m = 28
C. M + m = 29
D. M + m = 6 3
Gọi S là tổng các số thực m để phương trình z 2 - 2 z + 1 - m = 0 có nghiệm phức thỏa mãn |z|=2. Tính S
A. 6
B. 10
C. -3
D. 7
Cho số phức z = m + 3 + ( m 2 - 1 ) i , với m là tham số thực thay đổi. Tập hợp các điểm biểu diễn số phức z thuộc đường cong (C). Tính diện tích hình phẳng giới hạn bởi (C) và trục hoành.
A. 4 3
B. 8 3
C. 2 3
D. 1 3