Cho số phức z thỏa mãn 1 + i z là số thực và |z-2|=m với m ∈ R. Gọi m 0 là một giá trị của m để có đúng một số phức thỏa mãn bài toán. Khi đó
A. m 0 ∈ ( 0 ; 1 / 2 )
B. m 0 ∈ ( 1 / 2 ; 1 )
C. m 0 ∈ ( 3 / 2 ; 2 )
D. m 0 ∈ ( 1 ; 3 / 2 )
Cho các số phức z 1 = 1, z 2 = 2 − 3 i và các số z thỏa mãn z − 1 − i + z − 3 + i = 2 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − z i + z − z 2 . Tính tổng S = M + m
A. S = 4 + 2 5 .
B. S = 5 + 17 .
C. S = 1 + 10 + 17 .
D. S = 10 + 2 5 .
Cho z = x + y i x , y ∈ R là số phức thỏa mãn điều kiện z ¯ + 2 - 3 i ≤ z + i - 2 ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 y . Tính M + m
A. 156 5 - 20 10
B. 60 - 20 10
C. 156 5 + 20 10
D. 60 + 20 10
Cho số phức z thỏa mãn z + 2 − i + z − 5 + 6 i = 7 2 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = z − 1 + 2 i . Tổng M + m là:
A. 2
B. 3 2 .
C. 4 2 .
D. 7 2 .
Xét các số phức z thỏa mãn điều kiện z − 3 + 4 i + z + 2 − i = 5 2 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z − 4 − 3 i . Tính tổng bình phương của M và m.
A. 82
B. 162
C. 90
D. 90 + 40 5
Xét các số phức z thỏa mãn điều kiện z − 3 + 4 i + z + 2 − i = 5 2 . Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z − 4 − 3 i . Tính tổng bình phương của M và m.
A. 82
B. 162
C. 90
D. 90 + 40 5
Cho số phức z thỏa mãn: z + 2 + i = 4 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của z − 1 − 2 i . Tính S = M + m.
A. 6 2
B. 4 2
C. 2 2
D. 8 2
Cho số phức z thỏa z — + 3 i + 3 + z — - 2 i - 2 = 5 2 . Giả sử m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của z - i - 1 . Tinh S=M+m.
A. S = 2 + 2 5
B. S = 4 2
C. S = 5 + 2 2
D. S = 2
Cho z=x+yi với x , y ∈ ℝ là số phức thỏa mãn điều kiện z → + 2 - 3 i ≤ z + i - 2 ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 y . Tính M+m.
A. 60 + 2 10
B. 156 6 - 20 10 .
C. 60 - 2 10 .
D. 156 5 + 20 10