\(x^2-2\left(m-1\right)x+m^2+4=0\)
\(\Delta=b^2-4ac\)
\(\Delta=-8m-12\)
Để phương trình có 2 nghiệm phân biệt
\(\Rightarrow\Delta>0\Leftrightarrow m< -\dfrac{3}{2}\)
Theo định lý Viet
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+x_2\right)^2=4\left(m-1\right)^2\\x_1x_2=m^2+4\end{matrix}\right.\)
Theo yêu cầu đề bài \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=3\)
\(\Leftrightarrow\dfrac{x^2_1+x^2_2}{x_1x_2}=3\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=3\)
\(\Leftrightarrow\dfrac{4\left(m-1\right)^2-2\left(m^2+4\right)}{m^2+4}=3\)
\(\Leftrightarrow\dfrac{4\left(m^2-2m+1\right)-2m^2-8}{m^2+4}=3\)
\(\Leftrightarrow\dfrac{2m^2-8m-4}{m^2+4}=3\)
\(\Leftrightarrow2m^2-8m-4=3m^2+12\)
\(\Leftrightarrow m^2+8m+16=0\)
\(\Delta=b^2-4ac\)
\(\Delta=0\)
\(\Rightarrow m=-\dfrac{b}{2a}=-4\)