Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-1\end{matrix}\right.\)
Gọi \(x_3;x_4\) là các nghiệm của pt nhận \(\dfrac{1}{x_1};\dfrac{1}{x_2}\) là nghiệm, ta có:
\(\left\{{}\begin{matrix}x_3+x_4=\dfrac{1}{x_1}+\dfrac{1}{x_2}\\x_3x_4=\dfrac{1}{x_1}.\dfrac{1}{x_2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{x_1+x_2}{x_1x_2}\\x_3x_4=\dfrac{1}{x_1x_2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{2m}{m-1}\\x_3x_4=\dfrac{1}{m-1}\end{matrix}\right.\)
Theo định lý Viet đảo, \(x_3;x_4\) là nghiệm của:
\(x^2-\dfrac{2m}{m-1}x+\dfrac{1}{m-1}=0\)
Hoặc là: \(\left(m-1\right)x^2-2mx+1=0\) (với \(m\ne1\))