Ta có: đen-ta phẩy= [-(m+1)]2-1(-m-2)= m2+3m+3 =(m+3/2)2+3/4 >0 với mọi m
=>Phương trình luôn có nghiệm x1;x2 với mọi m. KHi đó,theo hệ thức vi-ét:
x1+x2=-b/a=2(m+1) và x1x2=c/a=-(m+2)
Ta có: 1/x1+1/x2= (x1+x2)/x1x2 =(2m+2)/-(m+2)=[ 2(m+2)-2]/-(m+2)
= -2+2/(m+2)
Suy ra: D nguyên khi 2/(m+2) nguyên
=> (m+2) thuộc { 1;-1;2;-2}
<=> m thuộc { -1;-3;0;-4}