Cho bất phương trình m . 3 x + 1 + ( 3 m + 2 ) ( 4 - 7 ) x + ( 4 + 7 ) x > 0 với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho có nghiệm đúng với mọi x ∈ - ∞ ; 0
A. m ≥ 2 - 2 3 3
B. m > 2 - 2 3 3
C. m > 2 + 2 3 3
D. m ≥ - 2 - 2 3 3
Trong mặt phẳng với hệ tọa độ (Oxy), tìm tất cả các giá trị của tham số m để phương trình x2+y2+2mx-2(m-3)y +m2+1=0 là phương trình của một đường tròn
Cho bất phương trình m .3 x + 1 + 3 m + 2 4 − 7 x + 4 + 7 x > 0 , với m là tham số. Tìm tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x ∈ − ∞ ; 0 .
A. m > 2 + 2 3 3 .
B. m > 2 − 2 3 3 .
C. m ≥ 2 − 2 3 3 .
D. m ≥ − 2 − 2 3 3 .
Cho hàm số y=f(x) có đạo hàm liên tục trên , đồ thị hàm số y=f’(x) như hình vẽ bên dưới. Cho bất phương trình f e x + 2 3 e 3 x - e x - m ≥ 0 ; với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình f e x + 2 3 e 3 x - e x - m ≥ 0 đúng với mọi x ∈ - 2 ; 2
A. m ≤ f e + 2 3 e 3 - e
B. m ≤ f 1 - 1 3
C. m ≤ f 1 e + 2 3 e - 3 - e - 1
D. m ≤ f e 2 + 2 3 e 3 2 - e 2
Trong không gian Oxyz, cho đường thẳng △ : x - 3 1 = y - 1 3 = z - 2 - 1 . Có tất cả bao nhiêu giá trị thực của m để phương trình x 2 + y 2 + z 2 - 4 z + 2 m y - 2 m + 1 z + m 2 + 2 m + 8 = 0 là phương trình của một mặt cầu (S) sao cho có duy nhất một mặt phẳng chứa Δ và cắt (S) theo giao tuyến là một đường tròn có bán kính bằng 1.
A. 1
B. 6.
C. 7.
D. 5.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-y+6z+m=0 và cho đường thẳng d có phương trình x - 1 2 = y + 1 - 4 = z - 3 - 1 . Tìm m để d nằm trong (P).
A. m = –20.
B. m = 20
C. m = 0
D. m = –10
Cho phương trình m + 1 log 2 2 x + 2 log 2 x + ( m - 2 ) = 0 . Tìm tập hợp tất cả các giá trị của tham số thực m để phương trình đã cho có hai nghiệm thực x 1 , x 2 thỏa 0 < x 1 < 1 < x 2 .
A. 2 ; + ∞
B. - 1 ; 2
C. - ∞ ; - 1
D. - ∞ ; - 1 ∪ 2 ; + ∞
Cho phương trình 4 x 2 - 2 x + 1 - m . 2 x 2 - 2 x + 2 + 3 m - 2 = 0 . Tập tất cả các giá trị của tham số m để phương trình đã cho có nghiệm phân biệt là
A. 2 ; + ∞
B. [ 2 ; + ∞ )
C. 1 ; + ∞
D. - ∞ ; 1 ∪ 2 ; + ∞
Cho hàm số y=f(x)có đạo hàm liên tục trên ℝ , đồ thị hàm số y=f’(x) như hình vẽ bên dưới.
Cho bất phương trình f 2 x - 1 3 . 2 3 x + 2 x + 2 3 + m ≥ 0 với m là tham số thực. Tìm điều kiện cần và đủ để bất phương trình f 2 x - 1 3 . 2 3 x + 2 x + 2 3 + m ≥ 0 đúng với mọi x ∈ - 2 ; 2
A. m ≥ - f 2
B. m ≥ - f 1 - 4 3
C. m ≤ - f 4 + 50 3
D. m ≤ - f 1 2 - 9 8