cho một đường tròn tâm (O;R) , đường kính AB. qua điểm C thuộc nửa đường tròn, kẻ tiếp tuyến d của nửa đường tròn. gọi M,N lần lượt là hình chiếu của A và B trên d. gọi H là đường vuông góc kẻ từ C đến AB.chứng minh rằng:
a) tứ giác ABNM là hình thang vuông.
b) AC là phân giác của BAM.
c) CH^2 = AM.BN
Cho nửa đường tròn tâm O, đường kính AB. Lấy OA làm đường kính, vẽ nửa đường tròn nằm trên nửa mặt phẳng bờ AB chứa nửa đường tròn tâm O. Trên nửa đường tròn đường kính OA lấy điểm C không trùng với A và O, tia OC cắt nửa đường tròn tâm O tại D. Vẽ DH vuông góc với AB. CHứng minh AHCD là hình thang cân
Cho nửa đường tròn (O;R) đường kính AB. Trên đoạn Ao lấy điểm C, vẽ tia Cx vuông góc với AB, tia Cx cắt nửa đường tròn (O) tại D, Trên cung BD lấy điểm M. kẻ tia BM cắt Cx tại E. Giao điểm của AM và Cx là H , tia BH cắt nửa đường tròn (O) ở N. Gọi I là trung điểm của EH
a. CMR: H là trực tâm của tam giác ABEb. CMR: NI là tiếp tuyến của nửa đường tròn (O)c.CMR: khi M chuyển động trên cung BD thì đường thẳng MN luôn đi qua 1 điểm cố địnhCho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
cho nửa đường tròn (O ; R), đường kính AB. Kẻ các tiếp tuyến tại A và B với nửa đường tròn. Qua điểm M thuộc nửa đường tròn ( M khác A và B) kẻ tiếp tuyến thứa 3 cắt các tiếp tuyến tại A và B lần lượt tại C và D . Chứng minh
a) CD = CA + DB
b) Tam giác COD là tam giác vuông
c) AB là tiếp tuyến của đường tròn đường kính CD
giúp mk với
Bài 1. Cho nửa đường tròn tâm O, đường kính AB, tiếp tuyến Ax. Gọi C là 1 điểm trên nửa đường tròn. Tia phân giác của góc CAx cắt nửa đường tròn tại E. AE và BC cắt nhau tại K.
a, ΔABC là hình j? Vì sao?
b, Gọi I là giao điểm của AC và BE. Cm KI // Ax.
c, Cm OE //BC.
Bài 2. Cho nửa đường tròn tâm O, đường kính AB. Trên tia đối của tia AB lấy M, vẽ tiếp tuyến MC với nửa đường tròn. Gọi H là hình chiếu của C trên AB.
a, Cm tia CA là phân giác của góc MCH.
b, Giả sử Ma=a, MC=2a. Tính AB và CH theo a.
Giúp mk vs nak !
Cho nửa đường tròn tâm (O), đường kính AB=2R, M là một điểm tùy ý trên nửa đường tròn(M#A;B).Kẻ hai tia tiếp tuyến Ax và By với nửa đườngtròn.Qua M kẻ tiếp tuyến thứ ba lần lượt cắt Ax và By tại C;D.
a)CM:CD=AC+BD và góc COD=900
b)CM: AC.BD=R2
c)OC cắt AM tại E, OD cắt bm tại F.CM: EF=R
d)Tìm vị trí của M để CD có độ dài nhỏ nhất
1. Cho đường tròn tâm O đường kính AB, vẽ đường tròn tâm M đường kính OA. bán kính OC của đường tròn O cắt M tại D, vẽ CD vuông góc với AB. Tứ giác ADCH là hình gì?
2.Cho (O;R) Vẽ 2 bán kính OA;OB. Trên OA và OB lấy các điểm M,N sao cho OM=ON. Vẽ dây BC đi qua MN (M nằm giữa C và N)
a. So sánh MC và ND
b.Biết AOB=90 độ và CM=MN=MD. Tính OM theo R
3.Cho tam giác ABC nhọn nội tiếp đường tròn tâm O và cá góc A=45 độ. 2 đường tròn BE và CF cắt nhau tại E. CMR: B,E,O,F,C cùng nằm trên 1 đường tròn.
cho vừa đường tròn vừa đường kính ab = 2r. kẻ 2 tiếp tuyến ax, by. gọi m là 1 diểm thuộc đường tròn ( m khác a, b ) tiếp tuyến tại m với nửa đường tròn cắt ax, by
a, CMR: góc COD =90 độ
b, C/m BDMO cân thuộc đường tròn chỉ ra bán kính của đường tròn
c, C/m CD= BC+BD
AC không đổi khi M thay đổi trên O Ab là tiếp tuyến cảu nửa đường tròn đường kính CD