Cho hai đường tròn (O;R) và (I;r) tiếp xúc ngoài tại M (R>r).Kẻ tiếp tuyến chung ngoài BC (B∈(O);C∈(I) ).Tiếp tuyến chung trong tại M cắt BC tại K.Kẻ đường kính BE của đường tròn (O).
a)Chứng minh BK=KC và góc BME=90⁰
b)OK cắt BM tại N;IK cắt CM tại P.Chứng minh NP//BC
c)Chứng minhBC= 2\(\sqrt[]{IM.IO-IK.IP}\)
1) Cho nửa đường tròn tâm O đường kính BC, điểm A thuộc nửa đường tròn (O). Vẽ bán kính OK song song với BA (K và A nằm cùng phía đối với BC). Tiếp tuyến đường tròn (O) tại C cắt OK ở I , gọi H là giao điểm của AC và OI.
a) Chứng minh : AI là tiếp tuyến của đường tròn (O)
b) Cho BC=30cm, AB=18cm . Tính OI.
c) Chứng minh: CK là phân giác của góc ACI
Cho nửa đường tròn tâm O, đường kính AB = 2R. Lấy 1 điểm C trên nửa đường tròn sao cho AC = R. Gọi K là giao điểm của tiếp tuyến n tại A với nửa đường tròn và đường thẳng BC.
a) Chứng minh: D AKB; D ACB vuông và tính sin∠ABC; số đo ∠ABC
b) Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn (O) tại M. OK cắt AM tại E. Chứng OK ^ AM và KC.CB = OE.OK.
c) Đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN = IO
d) Vẽ MH ^ AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh: EF//AB.
Giúp mình với!!!!!!!!!!!!
Cho đường tròn (O; R) đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?
Cho nửa đường tròn (O) đường kính AB = 2R. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. M là điểm trên (O) sao cho tiếp tuyên tại M cắt Ax, By tại D và C. Đường thẳng AD cắt BC tại N
a, Chứng minh A, C, M, O cùng thuộc một đường tròn. Chỉ ra bán kính của đường tròn đó
b, Chứng minh OC và BM song song
c, Tìm vị trí điểm M sao cho SACDB nhỏ nhất
d, Chứng minh MN và AB vuông góc nhau
Cho đường tròn , đường kính là điểm nằm trên đường tròn và ( khác . Vẽ vuông góc với tại . Tiếp tuyến tại của đường tròn cắt tại .
a) Chứng minh là trung điểm của và là tiếp tuyến của đường tròn .
b) Gọi là trung điểm của . Gọi là giao điểm của với . Chứng minh đồng dạng và ba điểm thẳng hàng.
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB tam giác ACB vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
cho nửa đường tròn tâm O, đường kính AB =2R. Lấy một điểm C trên nửa đường tròn sao cho AC = R . Gọi K giao điểm của tiếp tuyến tại A với nửa đường tròn và đường thẳng BC.
a )Chứng minh tam giác AKB , tam giác ACB là tam giác vuông và tính sin góc ABC số đo góc ABC .
b )Từ K vẽ tiếp tuyến thứ hai với nửa đường tròn tâm O tại M . OK cắt AM tại E. Chứng minh OK vuông góc với AM và KC.CB = OE.OK
C )đường vuông góc với AB vẽ từ O cắt BK tại I và cắt đường thẳng BM tại N. Chứng minh IN=IO
d )Vẽ MH vuông góc với AB tại H. Gọi F là giao điểm của BK và MH. Chứng minh EF//AB.
đường kính AB và điểm M bất kì thuộc đường tròn (M khác A và B). Kẻ tiếp tuyến tại A của đường tròn, tiếp tuyến này cắt tia BM ở N. Tiếp tuyến của đường tròn tại M cắt AN ở D.
a.Chứng minh 4 điểm A, D, M, O cùng thuộc một đường tròn
b. Chứng minh OD song song với BM và suy ra D là trung điểm của AN
c. Đường thẳng kẻ qua O và vuông góc với BM cắt tia DM ở E. Chứng minh BE là tiếp tuyến của đường tròn (O; R)
d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng BM tại I. Gọi giao điểm của AI và BD là J. Khi điểm M di động trên đường tròn (O; R) thì J chạy trên đường nào?