cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A; AH) kẻ tiếp tuyến BD, CE với đường tròn ( D, E là các tiêp tuyến khác H ). chứng minh rằng:
a/ Ba điểm D, A, E thẳng hàng.
b/ DE tiếp xúc với đường tròn có đường kính BC
cho đường tròn tâm O, đường kính AB và dây EF không cắt đường kính. Gọi I và K lần lượt là chân các đường vuông góc kẻ từ A và B đến EF. Chứng minh rằng IE = KF
Cho nửa đường tròn (O) đường kính AB. Kẻ tiếp tuyến Bx với nửa đường tròn. Gọi C là điểm trên nửa đường tròn sao cho cung CB bằng cung CA, D là một điểm tùy ý trên cung CB (D khác C và D). Các tia AC,AD cắt tia Bx theo thứ tự ở E và F.
a) Chứng minh tam giác ABE vuông cân
b) Chứng minh \(^{FB^2=FD.FA}\)
c) Chứng minh tứ giác CDFE nội tiếp đường tròn
tứ giác ABCD có C+D=90 độ. gọi M ,N,P,Q lần lượt là trung điểm AB,BD,DC,CA . Chứng minh M,N,P,q cùng nằm trên 1 đường tròn
Cho ΔABC đều , gọi M ; N ; P lần lượt là trung điểm của AB ; AC ; BC . Chứng minh B ; M ; N ; C thuộc đường tròn tâm P
Cho tam giác ABC có góc A=60 độ . Đương tròn (I) nội tiếp tam gaisc tiếp xúc với các cạnh BC , AC, AB lần lượt tại D,E,F . Đường thẳng ID cắt EF tại K , đường thẳng qua K và song song với BC cắt AB, AC thứ tự tại M , N
a. c/m : tứ giác MINA nội tiếp
b. Gọi J là trung điểm BC . C/m : A,K,J thẳng hàng
c. Gọi r là bán kính đường tròn tâm I , S là diện tích tứu giác IEAF . c/m : S tam giác IMN \(\ge\) S/4
1. Cho đg tròn (O) , đg kính AB=2R . Từ A kẻ tiếp tuyến Ax với đg tròn (O) (A là tiếp tuyến ) . Trên tia Ax lấy điểm C sao cho AC =2R . Qua C vẽ đg thg cắt (O) tại 2 điểm D và E ( D nằm giữa C và E ; đg thg này cx cắt đoạn OB ) . Gọi H là trung điểm của đoạn thg DE
a. c/m : CA^2=CD.CE
b. c/m : tg AOHC nội tiếp
c. đoạn thg CB cắt đg tròn (O) tại K . Tính số đo góc AOK và diện tích hình quạt AOK theo R
d. ddg thg CO cắt tía BD, tia BE lần lượt tại M và N . c/m :O là trung điểm của MN
Cho hình vuông ABCD cạnh ạ . Trên cạnh BC lấy điểm M , cạnh CD lấy điểm N sao cho góc MAN = 45 độ . Gọi giao điểm của BD với AM,AN lần lượt tại P, Q . c/m :
a. các tứ gaisc ABMQ , ADNP nội tiếp
b. Gọi H là giao điểm của MQ và NP . c/m : AH vuông góc MN
c. Khi M,N thay đổi thì đường thẳng MN luôn tiếp xúc với 1 đường tròn cố định
d. Tìm vị trí của điểm M trên BC để diện tích tứ gaisc MNPQ nhỏ nhất
cho(o) điểm A nằm ngoài đg tròn và các tiếp tuyến AM,AN.Qua A vẽ đg thẳng cắt đg tròn tại 2điểm B và C(B nằm giữa A và C).H là trung điểm củaBC 1: cm tứ giác ANHM nội tiếp 2:cm AH^2=AB.AC 3:đg thẳng qua B // vs AN cắt MN tại E,cm EH//NC