\(=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\)
\(=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\)
công thức suy ra của x1 -x2 là j v mn
viet á
Mình thấy định lí vi-et có phát biểu như sau
Công thức Vi-ét thể hiện theo phương trình bậc 2 có dạng như sau nếu 2 nghiệm của phương trình lần lượt là x1 và x2, ta có công thức:
ax2 + bx + c = 0, điều kiện a # 0 thì ta có x1 + x2 = S = -b/a và x1.x2 = P = c/a
vậy mình xin hỏi là S ở đây là gì và P ở đây là gì vậy mọi người. Mong mọi người giải đáp
X1^2.x2^2 phân tích ra hệ thức vi ét
Hệ thức vi-et
cho mình hỏi,làm sao để từ \(x^21+x^22\) mà suy ra được \(S^2-2P\),nguyên văn là như vậy nè nhưng mình ko hiểu\(x^21+x^22=\left(x1+x2\right)^2-2\cdot x1\cdot x2=S^2-2P\)
sẵn cho mình hỏi luôn là từ \(x^21-x^22\) thí sẽ suy ra cái gì
Gọi x1, x2 là hai nghiệm của phương trình: 3x2 + 5x – 6 = 0.
Không giải phương trình, hãy tính giá trị biểu thức sau: \(\dfrac{x1}{x2-1}\)+\(\dfrac{x2}{x1-1}\)
(X1+1)bình × x2 +(x2+1)bình × x1 +16=0
Tìm m để phương trình có hai nghiệm x1; x2 thoả
Hệ thức vi ét
X1+x2 = -b phần a = 2m +2
X1 ×x2 = c phần a = m-5
Cho phương trình:-2x2 +3x+6=0
Không giải phương trình, hãy tính giá trị biểu thức |x1-x2| biết x1, x2 là nghiệm của PT trên.
*Giải bằng Hệ thức Vi-ét!
Dùng định lý Vi – ét, hãy chứng tỏ rằng nếu tam thức a x 2 + bx + c có hai nghiệm x 1 , x 2 thì nó phân tích được thành a x 2 + bx + c = a(x - x 1 )(x - x 2 )
Phân tích các tam thức sau thành tích:
x 2 - 11x + 30
Dùng định lý Vi – ét, hãy chứng tỏ rằng nếu tam thức a x 2 + bx + c có hai nghiệm x 1 , x 2 thì nó phân tích được thành a x 2 + bx + c = a(x - x 1 )(x - x 2 )
Phân tích các tam thức sau thành tích:
5 x 2 + 8x - 4