Từ điểm M ở ngoài đường tròn (O), vẽ tiếp tuyến MA đến (O) (với A là tiếp điểm) và vẽ cát tuyến MBC sao cho MB < MC và tia MC nằm giữa 2 tia MA và MO. Gọi H là hình chiếu vuông góc của điểm A trên đường thẳng OM, gọi E là trung điểm của đoạn thẳng BC.
a) Chứng minh O, E, A, M cùng thuộc 1 đường tròn.
b) Chứng minh MA2 = MB . MC
c) Chứng minh tứ giác BCOH nội tiếp và HA là tia phân giác của BHC.
Từ điểm M nằm bên ngoài đường tròn (O), vẽ tiếp tuyến MA và cát tuyến MCB với A,B,C Î (O). Phân giác góc B A C ^ cắt BC tại D, cắt (O) tại N. Chứng minh:
a, MA = MD
b, Cho cát tuyến MCB quay quanh M và luôn cắt đưòng tròn. Chứng minh MB.MC không đổi
c, N B 2 = N A . N D
cho điểm M nằm ngoài (O), vẽ tiếp tuyến MC và cát tuyến MAB với (O) (C là tiếp điểm; A nằm giữa M và B; O nằm trong góc BMC).
a) chứng minh MC^2=MA*MB
b)gọi H là hình chiếu vuông góc của C lên MO. Chứng minh tứ giác AHOB nội tiếp
Cho đường tròn tâm (O), từ điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC với đường tròn, biết MA=6cm, MC=12cm.Tính MB.
Từ điểm M nằm ngoài đường tròn vẽ tiếp tuyến MA tới đường tròn (O; R), ( A là tiếp điểm). Gọi E là trung điểm đoạn AM và hai điểm I, H lần lượt là hình chiếu của E và A trên đường thẳng OM. Qua M vẽ cát tuyến MBC tới đường tròn (O) sao cho MB < MC và tia MC nằm giữa hai tia MA, MO.
a) Chứng minh . góc AHB = góc AHC
b) Vẽ tiếp tuyến IK tới đường tròn (O) với K là tiếp điểm. Chứng minh . ∆MKH vuông tại K.
Bài 1: TỪ một điểm M cố định bên ngoài dg tròn (O) ,kẻ một tiếp tuyến MT và một cát tuyến MAB của dg tròn đó
CM: MT^2= MA.MB
Bài 2: Cho nửa dg tròn (O) dg kính AB. Trên tia đối của tia AB lấy một điểm M vẽ tiếp tuyến MC với nửa dg tròn gọi là H là hình chiếu của C trên AB
a) CM: tam giác MAC đồng dạng tam giác MCB
b) CM :MA. MB=MO.MH
c) CM :CA là tia phân giác của góc MCH
Từ điểm M nằm ngoài đường tròn (O,R), vẽ tiếp tuyến MA, (A là tiếp điểm) Gọi E trung điểm AM, kẻ EI vuông góc Om tại I, AH vuông góc OM tại H.Qua M vẽ cát tuyến MBC có MB < MC và tia MC nằm giữa tia MA và MO.Vẽ tiếp tuyến IK tới (O) với K là tiếp điểm.
Chứng minh:
a. Tam giác MHK vuông tại K
b. Giả sử: BC = 3BM, D là trung điểm MC. Chứng minh: MC tiếp xúc với đường tròn ngoại tiếp tam giác ODH
Từ một điểm M nằm bên ngoài (O), vẽ tiếp tuyến MA, cát tuyến MCB ( C nằm giữa M và B). Gọi N là điểm chính giữa của cung CB không chứa điểm A, AN cắt CB tại D. Chứng minh rằng
a) MA = MB
b)MA^2 = MC.MB
c)NB^2= NA.ND
Cho đường tròn (O) và điểm M nằm ngoài đường tròn(O,R) với OM>2R, từ M vẽ hai tiếp tuyến MA, MB của đường tròn (O) ( A và B là hai tiếp điểm), vẽ cát tuyến MEF của đường tròn (O) (E nằm giữa M và F). Gọi H là giao điểm của MO và AB.
a. Chứng minh tứ giác MAOB nội tiếp đường tròn, xác định tâm của đường tròn đó.
b.Chứng minh MA2 = ME.MF và MH.MO = ME.MF
c. lấy điểm P thuộc cung AB nhỏ. Vẽ tiếp tuyến P cắt MA, MB lần lượt tại K và D, vẽ OK, OD lần lượt cắt AB tại Q và N. Chứng minh KN, DQ, OP đồng quy .
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân