Đáp án B
Gọi a là độ dài cạnh hình lập phương. Thể tích khối lập phương: V 1 = a 3
Thể tích khối tứ diện: A B D A ' : V 2 = 1 3 . A A ' . S A B D = 1 3 . a . a 2 2 = a 3 6
Vậy V 1 = 6 V 2
Đáp án B
Gọi a là độ dài cạnh hình lập phương. Thể tích khối lập phương: V 1 = a 3
Thể tích khối tứ diện: A B D A ' : V 2 = 1 3 . A A ' . S A B D = 1 3 . a . a 2 2 = a 3 6
Vậy V 1 = 6 V 2
Cho hình lăng trụ đứng ABC.A' B' C' có AB=AC=a, góc ∠ BAC = 120 0 , AA ' = a .Gọi M, N lần lượt là trung điểm của B^' C^' và CC^'. Số đo góc giữa mặt phẳng (AMN) và mặt phẳng (ABC) bằng:
A. 60 0
B. 30 0
C. arcsin 3 4
D. arccos 3 4
Cho lăng trụ đứng cóABC.A'B'C' có A B = A C = B B ' = a , B A C = 120 ° . Gọi I là trung điểm của CC'. Tính cosin của góc tạo bởi hai mặt phẳng (ABC) và (AB'I).
A. 2 2
B. 3 5 12
C. 30 10
D. 3 2
Cho lăng trụ đứng A B C . A ' B ' C ' c ó A B = A C = B B ' = a , B A C = 120 ° . Gọi I là trung điểm của CC'. Tính cosin của góc tạo bởi hai mặt (ABC) và (AB'I)
A. 2 2
B. 3 5 12
C. 30 10
D. 3 2
Cho hình lăng trụ đứng ABC. A 'B 'C ' có đáy ABC là tam giác vuông tại A. Gọi E là trung điểm của AB. Cho biết A B = 2 a ; B C = 13 ; C C ' = 4 a . Khoảng cách giữa hai đường thẳng A 'B và CE bằng
A. 4 a 7
B. 12 a 7
C. 6 a 7
D. 3 a 7
Cho lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông, AB=AC=a. Góc giữa hai mặt phẳng (ACC′),(AB′C′) bằng 60 ° . Thể tích của khối chóp B′.ACC′A′ bằng
A. a 3 2 12
B. a 3 2 6
C. a 3 2 36
D. a 3 2 18
Cho lăng trụ tam giác ABC.A′B′C′ có độ dài cạnh bên bằng 4 và khoảng cách từ điểm A đến các đường thẳng BB′,CC′ lần lượt bằng 1 và 2. Biết góc giữa hai mặt phẳng (ABB′A′) và (ACC′A′) bằng 60 ° . Tính thể tích khối lăng trụ ABC.A′B′C′.
A. 4 3
B. 3
C. 3 3
D. 2 3
Cho hình lăng trụ đứng A B C . A ' B ' C ' có đáy ABC là tam giác cân, A B = A C = a , B A C ^ = 120 ° ,
B B ' = a , I là trung điểm của CC'. Gọi α là góc giữa hai mặt phẳng A B C và A B ' I . Tính cos α
A. cos α = 3 10
B. cos α = 3 10
C. cos α = 3 10
D. cos α = 2 5
Cho lăng trụ ABC.A′B′C′ có tất cả các cạnh bằng 1, hình chiếu vuông góc của A′ lên mặt phẳng (ABC) trùng với trung điểm cạnh AB. Côsin góc giữa hai mặt phẳng (A′BC) và (AB′C′) bằng
A. 65 65
B. 2 26 13
C. 143 13
D. 65 13
Cho lăng trụ tam giác ABC.A′B′C′. Gọi M,N,P lần lượt là trung điểm các cạnh A′B′,BC,CC′. Mặt phẳng (MNP) chia khối lăng trụ thành hai phần, phần chưa điểm B có thể tích là V 1 . Gọi V là thể tích khối lăng trụ. Tính V 1 V .
A. 25 288
B. 29 144
C. 37 288
D. 19 144