Cho hình lăng trụ tam giác đều ABC.A′B′C′ có góc giữa hai mặt phẳng (A′BC) và (ABC) bằng 60 0 , cạnh AB = 2. Thể tích V của khối lăng trụ ABC.A′B′C′ là
A. 3 3 4
B. 3
C. 3
D. 3 3
Cho khối lăng trụ tam giác đều ABC.A′B′C′ có cạnh đáy bằng a, góc giữa đường thẳng B′C và mặt đáy bằng 30 ° . Khoảng cách giữa hai đường thẳng A′C và B′C′ bằng
A. a 15 15
B. a 15 5
C. a 3 13
D. a 39 13
Cho khối lăng trụ tam giác đều ABC.A′B′C′ có cạnh đáy bằng a, góc giữa đường thẳng B′C và mặt đáy bằng 30 ° . Khoảng cách giữa hai đường thẳng A′C và B′C′ bằng
A. a 15 15
B. a 15 5
C. a 3 13
D. a 39 13
Cho hình lăng trụ tam giác đều ABC.A′B′C′ có tất cả các cạnh bằng a. Tang của góc giữa đường thẳng AB′ và mặt phẳng (ACC′A′) bằng
A. 1.
B. 15 5
C. 15 3
D. 6 2
Cho lăng trụ đứng ABC.A′B′C′ có đáy là tam giác vuông, AB=AC=a. Góc giữa hai mặt phẳng (ACC′),(AB′C′) bằng 60 ° . Thể tích của khối chóp B′.ACC′A′ bằng
A. a 3 2 12
B. a 3 2 6
C. a 3 2 36
D. a 3 2 18
Cho khối lăng trụ ABC.A′B′C′ có đáy là tam giác vuông cân tại A, BC = 2a và hình chiếu vuông góc của A′ lên mặt phẳng (ABC) trùng với trung điểm cạnh BC, góc giữa AA′ và mặt đáy bằng 60 ° . Thể tích khối lăng trụ đã cho bằng
A. 3 a 3 3
B. a 3 2
C. 3 a 3 2
D. 3 a 3
Cho hình lăng trụ ABC.A′B′C′ có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của A′ xuống mặt phẳng ABC trùng với trung điểm của cạnh AB. Mặt bên (ACC′A′) tạo với đáy một góc 60 0 . Tính thể tích khối lăng trụ ABC.A′B′C′.
A. 3 a 3 2
B. 3 a 3 3 2
C. a 3 3 2
D. a 3 3 3
Cho hình lăng trụ đứng ABC.A' B' C' có đáy là tam giác vuông cân đỉnh A, BC=2a, thể tích khối lăng trụ đã cho bằng a 3 . Khoảng cách từ điểm B' đến mặt phẳng (A' BC) bằng
A. 2 a B. 6 a 4 . C. 2 a 2 . D. 6 a 3
B. 6 a 4 .
C. 2 a 2 .
Cho lăng trụ tam giác ABC.A′B′C′. Gọi M,N,P lần lượt là trung điểm các cạnh A′B′,BC,CC′. Mặt phẳng (MNP) chia khối lăng trụ thành hai phần, phần chưa điểm B có thể tích là V 1 . Gọi V là thể tích khối lăng trụ. Tính V 1 V .
A. 25 288
B. 29 144
C. 37 288
D. 19 144