c: Vì góc B là góc nội tiếp chắn cung nhỏ AC
nên \(sđ\stackrel\frown{AC}=2\cdot\widehat{B}=120^0\)
c: Vì góc B là góc nội tiếp chắn cung nhỏ AC
nên \(sđ\stackrel\frown{AC}=2\cdot\widehat{B}=120^0\)
cho tam giác ABC nhọn : B = 60 độ , nội tiếp đường tròn tâm (O) bán kính 3cm . Vẽ hai đường cao BE và CF cắt nhau tại H
a) CM : AEHF nội tiếp đường tròn
b) CM : BFCE nội tiếp đường tròn
c) tính độ dài cung nhỏ BC
d) Chứng minh đường thẳng OA vuông góc với EF
ai giúp tớ với .
Cho △ABC nhọn, góc B =60° nội tiếp (O: 3cm). Vẽ hai đường cao BE và CF cắt nhau tại H
a) Chứng minh tử giác AEHF nội tiếp. Xác định tâm và bán kính của đường tròn ngoại tiếp đó
b) Chứng minh tử giác BFEC nội tiếp góc BCF = góc BEF
c) Tính độ dài cung nhỏ AC
d) Chứng minh đường thẳng OA vuông góc với EF
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H
A. tứ giác AEHF nội tiếp
b. tức giác BFEC nội tiếp
c. chúng minh OA vuông góc EF
Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Vẽ đường cao BE và CF cắt nhau tại H.
a) Chứng minh: Tứ giác AEHF nội tiếp đường tròn.
b) Chứng minh: AB . CE = CH . BE c) Chứng minh: OA ⊥ EF
cho tam giác ABC nhọn nội tiếp đường tròn O. Vẽ 2 đường cao BE và CF cắt nhau tại H.
a. Chúng minh tứ giác AEHF nội tiếp
b. chứng minh BCEF nội tiếp
Cho tam giác nhọn ABC góc B bằng 60 độ nội tiếp đường tròn tâm O bán kính 3 cm .Hai đường cao BE CF cắt nhau tại H . Chứng minh tứ giác AEHF nội tiếp? Tính độ dài cung nhỏ BC?
Cho tam giác ABC có ba góc nhọn (AB<AC) nội tiếp đường tròn (O). Vẽ ba đường cao AD;BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AFHE và tứ giác BFEC là các tứ giác nội tiếp đường tròn
b) Đường thẳng EF cắt BC tại I. Chứng minh IE.IF=IB.IC
c) AI cắt đường tròn (O) tại K. Gọi M là trung điểm BC. Chứng minh ba điểm K,H,M thẳng hàng
Cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao BE, CF cắt nhau tại H
a) chứng minh tứ giác AEHF, BCEF nội tiếp
b) đường thẳng EF và BC cắt nhau tại I, vẽ tiếp tuyến ID với đường tròn ( D là tiếp điểm, D thuộc cung BC nhỏ). Chứng minh: ID^2=IB*IC
c) DE, DF cắt đường tròn (O) tại M,N. Chứng minh MN//EF
Cho ∆ABC nhọn (AB<AC) nội tiếp đường tròn (O), các đường cao AD, BE và CF cắt nhau tại H.
a) Chứng minh tứ giác AEHF và BCEF nội tiếp
b) Hai đường thẳng EF và BC cắt nhau tại M. Chứng minh MB.MC=ME.MF
c) AM cắt đường tròn (O) tại N. Đường thẳng qua B và song song với AC cắt AM tại I và cắt AH tại K. Chứng minh AN ⊥ HN và HI=HK.