Một khối nón có thiết diện qua trục là một tam giác vuông cân và đường sinh có độ dài bằng 3 cm2. Một mặt phẳng đi qua đỉnh và tạo với đáy một góc 600 chia khối nón thành hai phần. Tính thể tích phần nhỏ hơn (Tính gần đúng đến hàng phần trăm)
A. 4,36 cm3
B. 5,37 cm3
C. 5,61 cm3
D. 4,53 cm3
Cho hình phẳng D giới hạn bởi đường cong y = 3 + x − 2 e x x e x + 1 , trục hoành và hai đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V = π a + b ln 1 + 1 e , trong đó a, b là các số hữu tỷ. Mệnh đề nào dưới đây là đúng?
A. a+b=5
B. a-2b=5
C. a+b=3
D. a-2b=7
Cho khối nón có thiết diện qua trục là tam giác cân có một góc 120 ° và cạnh bên bằng a . Tính thể tích khối nón
A. π a 3 8
B. 3 π a 3 8
C. π a 3 3 24
D. π a 3 4
Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng 2a. Thể tích của khối nón bằng
A. 2 2 π a 3 3 .
B. π a 3 3 .
C. 2 π a 3
D. π a 3 .
Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng 2a. Thể tích khối nón đã cho bằng
A. 2 2 π a 3 3
B. 2 2 π a 3
C. 8 2 π a 3 3
D. 2 2 π a 2 3
Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh huyền bằng 2 3 . Thể tích của khối nón đã cho bằng
A. π 3
B. 3 π
C. 3 π 2
D. 3 π 3
Cho hình nón (N) có thiết diện qua trục là tam giác vuông cân, cạnh bên bằng 2a. Tính thể tích của khối nón (N) theo a.
A. 2 πa 3 2
B. 2 πa 3 2 3
C. πa 3 3
D. πa 3
Cho hình nón có bán kính đường tròn đáy bằng a. Thiết diện qua trục hình nón là một tam giác cân có góc ở đáy bằng 45 ° Tính thể tích khối cầu ngoại tiếp hình nón
A. 1 3 π a 3
B. 8 3 π a 3
C. 4 3 π a 3
D. 4 π a 3
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6