Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 48. Gọi M , N , P lần lượt là điểm thuộc các cạnh AB, CD, SC sao cho M A = M B , N C = 2 N D , S P = P C . Tính thể tích V của khối chóp P.MBNC.
A. V = 14
B. V = 20
C. V = 28
D. V = 40
Cho khối chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Gọi M, N lần lượt là các điểm trên các cạnh SB, SD sao cho MS = MB, ND = NS = 2. Mặt phẳng (CMN) chia khối chóp đã cho thành hai phần, thể tích của phần có thể tích nhỏ hơn bằng
A. 2 25
B. 1 12
C. 3 25
D. 5 48
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. I nằm trên cạnh SC sao cho IS = 2IC. Mặt phẳng (P) chứa cạnh AI cắt cạnh SB, SD lần lượt tại M, N. Gọi V ’ , V lần lượt là thể tích khối chóp S.AMIN và S.ABCD. Tính giá trị nhỏ nhất của tỷ số thể tích V ' V
A. 4 5
B. 5 54
C. 8 15
D. 5 24
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. I nằm trên cạnh SC sao cho I S = 2 I C . Mặt phẳng (P)chứa cạnh AI cắt cạnh SB;SD lần lượt tại M;N. Gọi V ' , V lần lượt là thể tích khối chóp S . A M I N và S . A B C D . Tính giá trị nhỏ nhất của tỷ số thể tích V V '
A. 4/5
B. 5/54
C. 8/15
D. 5/24
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Gọi M là trung điểm của SB. Plà điểm thuộc cạnh SD sao cho SP = 2DP. Mặt phẳng (AMP) cắt cạnh SC tại N. Tính thể tích của khối đa diện ABCDMNP theo V
A. V A B C D M N P = 23 30 V
B. V A B C D M N P = 19 30 V
C. V A B C D M N P = 2 5 V
D. V A B C D M N P = 7 30 V
Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là 48. Trên các cạnh SA, SB, SC, SD lần lượt lấy các điểm A',B',C' và D' sao cho SA ' SA = SC ' SC = 1 3 và SB ' SB = SD ' SD = 3 4 . Tính thể tích V của khối đa diện lồi SA' B' C' D'.
A. V= 4.
B. V= 6.
C. V= 3/2.
D. V= 9.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V 1 là thể tích khối chóp S.AMPN. Giá trị lớn nhất của V 1 V thuộc khoảng nào sau đây?
A. 0 ; 1 5 .
B. 1 5 ; 1 3 .
C. 1 3 ; 1 2 .
D. 1 2 ; 1 .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC=2ES , α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6
B. V 27
C. V 9
D. V 12
Cho hình chóp .S ABCD có đáy ABCD là hình bình hành. Hai điểm M, N thuộc các cạnh AB và AD (M, N không trùng với A, B, D). sao cho A B A M + 2. A D A N = 4. Kí hiệu V, V 1 lần lượt là thể tích của các khối chóp S . A B C D v à S . M B C D N . Tìm giá trị lớn nhất của V 1 V
A. 2 3
B. 3 4
C. 1 6
D. 14 17