a. Xét △BDC có: OI//DC (gt).
=>\(\dfrac{OI}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
=>\(\dfrac{DC}{OI}=\dfrac{BD}{BO}\)
=>\(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
=>\(\dfrac{OD}{BO}=\dfrac{DC}{AB}\) (định lí Ta-let).
Mà \(\dfrac{DC}{OI}-1=\dfrac{OD}{BO}\) (cmt).
=>\(\dfrac{DC}{OI}-1=\dfrac{DC}{AB}\)
=>\(\dfrac{DC}{OI}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
=>\(\dfrac{1}{OI}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{DC}\).