Cho hình lập phương có cạnh bằng 1. Diện tích mặt cầu đi qua các đỉnh của hình lập phương bằng:
A. 6 π
B. 3 π
C. π
D. 2 π
Mặt cầu đi qua tất cả các đỉnh của một hình lập phương cạnh a có bán kính bằng
A. 2 a 2
B. 3 a 4
C. 3 a 2
D. 6 a 4
Trong không gian Oxyz, cho hình lập phương ABCD.A'B'C'D' có tọa độ các đỉnh A(0;0;0),B(1;0;0), D(0;1;0) và A’(0;0;1). Gọi M là trung điểm cạnh AB và N là tâm của hình vuông ADD'A'. Diện tích của thiết diện tạo bởi mặt phẳng (CMN) và hình lập phương đã cho bằng
A. 3 5 4 14
B. 14 4
C. 3 14 4 5
D. 9 4 14
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M,N lần lượt là trung điểm của các cạnh A’B’ và BC. Mặt phẳng (DMN) chia hình lập phương thành 2 phần. Gọi V1 là thể tích của phần chứa đỉnh A, V2 là thể tích của phần còn lại. Tính tỷ số V 1 V 2
A. 2/3
B. 55/89
C. 37/48
D. 1/2
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a. Diện tích S của mặt cầu ngoại tiếp hình lập phương đó là:
A. S = π a 2
B. S = 3 π a 2 4
C. S = 3 π a 2
D. S = 12 π a 2
Cho khối đa diện (H) có các đỉnh là tâm các mặt bên của một hình lập phương có cạnh bằng 4. Xét hình nón tròn xoay (N) đi qua tất cả các đỉnh của đa diện (H), đỉnh và tâm đáy của (N) lần lượt là hai đỉnh của đa diện (H) nằm trên hai mặt bên đối lập nhau của hình lập phương (hình vẽ). Thể tích V của khối nón tròn xoay (N) bằng
A. 256 π
B. 64 π
C. 64 π 3
D. 16 π 3
Cho hình lập phương ABCD.A′B′C′D′ có cạnh bằng a. Khối nón đỉnh A, đáy là đường tròn đi qua ba điểm A′BD có thể tích bằng
A. 2 3 πa 3 27
B. 3 πa 3 8
C. 3 a 3 27
D. πa 3 6
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Tính diện tích S của mặt cầu ngoại tiếp hình lập phương ABCD.A’B’C’D’
A. S = π a 2
B. S = 3 π a 2
C. S= π a 2 3 2
D. S = 4 π a 2 3
Cho hình lập phương A B C D . A ' B ' C ' D ' cạnh a. Xét tứ diện AB'CD'. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mặt phẳng (ABC). Tính diện tích của thiết diện thu được.
A. a 2 3 .
B. 2 a 2 3 .
C. a 2 2 .
D. 3 a 2 4 .