a: Xét ΔSBC có M,N lần lượt là trung điểm của SB,SC
=>MN là đường trung bình
=>MN//BC
b: MN//BC
BC//AD
Do đó: MN//AD
c: \(C\in SN;C\in CD\)
Do đó: SN cắt CD tại C
d: B thuộc SM
B thuộc BC
Do đó: SM cắt BC tại B
e: MN thuộc mp(SBC)
AB thuộc mp(SAB)
Do đó: MN và AB là hai đường chéo nhau
f: \(I\in SI;I\in\left(ABCD\right)\)
Do đó: \(SI\cap\left(ABCD\right)=I\)