Cho hình chóp S.ABCD có thể tích V , đáy là hình bình hành tâm O. Mặt phẳng (α) đi qua A, trung điểm I của SO cắt các cạnh SB, SC, SD lần lượt tại M, N, P. Thể tích nhỏ nhất của khối chóp S.AMNP bằng
A. V 18
B. V 3
C. V 6
D. 3 V 8
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α đi qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại hai điểm H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D .
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S . A B C D có đáy ABCD là hình bình hành. Gọi M là điểm trên cạnh SC sao cho 5 S M = 2 S C , mặt phẳng α qua A, M và song song với đường thẳng BD cắt hai cạnh SB, SD lần lượt tại H, K. Tính tỉ số thể tích V S . A H M K V S . A B C D
A. 1 5
B. 8 35
C. 1 7
D. 6 35
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC = 2ES. Gọi α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, α cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6 .
B. V 27 .
C. V 9 .
D. V 12 .
Cho hình chóp S.ABCD. Trên cạnh SA lấy điểm M sao cho SM = 1 3 SA . Mặt phẳng α qua M và song song với mặt đáy lần lượt cắt SB, SC, SD tại N, P, Q. Tỉ số thể tích của khối chóp S.MNPQ với khối chóp S.ABCD là
A. 1 9
B. 1 3
C. 1 81
D. 1 27
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và có thể tích V. Gọi E là điểm trên cạnh SC sao cho EC=2ES , α là mặt phẳng chứa đường thẳng AE và song song với đường thẳng BD, cắt hai cạnh SB, SD lần lượt tại hai điểm M, N. Tính theo V thể tích khối chóp S.AMEN.
A. V 6
B. V 27
C. V 9
D. V 12
Cho hình chóp S.ABC. Gọi α là mặt phẳng đi qua A và song song với BC. Mặt phẳng α cắt SB, SC lần lượt tại M, N. Tính tỉ số S M S B biết α chia khối chóp thành 2 phần có thể tích bằng nhau
A. 1/2
C. 1/3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi K,M lần lượt là trung điểm của các đoạn thẳng SA, SB, (α) là mặt phẳng qua K song song với AC và AM. Mặt phẳng (α) chia khối chóp S.ABCD thành hai khối đa diện. Gọi V 1 là thể tích của khối đa diện chứa đỉnh S và V 2 là thể tích khối đa diện còn lại. Tính tỉ số V 1 V 2
A. V 1 V 2 = 7 25
B. V 1 V 2 = 5 11
C. V 1 V 2 = 7 17
D. V 1 V 2 = 9 23
Cho khối chóp S.ABCD có đáy là hình bình hành. (P) là mặt phẳng chứa AB, cắt SC, SD tại M, N sao cho SM = 1/3. SC. Gọi V1, V2 lần lượt là thể tích khối chóp S.ABMN và khối đa diện ABCDNM. Khi đó tỉ số V1/ V2 bằng:
A. 2/7
B. 2/9
C. 1/2
D. 1/8