Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N là trung điểm của SA, SB. Mặt phẳng (MNCD) chia hình chóp đã cho thành hai phần. Tỉ số thể tích hai phần là (số bé chia số lớn)
A. 3 5
B. 3 4
C. 1 3
D. 4 5
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60 ° . Gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Thể tích khối chóp S.ADNM bằng
A. 6 8 a 3
B. 3 6 16 a 3
C. 6 16 a 3
D. 6 24 a 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt đáy (ABCD) và SA = a. Điểm M thuộc cạnh SA sao cho S M S A = k . Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
A. k = − 1 + 3 2 .
B. k = − 1 + 5 2 .
C. k = − 1 + 2 2 .
D. k = 1 + 5 2 .
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy(ABCD). Điểm M thuộc cạnh SA sao cho S M S A = k , 0 < k < 1 Khi đó giá trị của k để mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau là:
A. k = - 1 + 5 2
B. k = 1 + 5 4
C. k = - 1 + 5 4
D. k = - 1 + 2 2
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a . SA vuông góc với đáy. Góc giữa cạnh bên SB và mặt đáy bằng 60 0 . Gọi M, N lần lượt là trung điểm của SC và SD . Tính thể tích của khối chóp S.AMN
A. V S . A M N = a 3 3 12
B. V S . A M N = a 3 3 24
C. V S . A M N = a 3 3 3
D. V S . A M N = a 3 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD. Biết khoảng cách giữa hai đường thẳng BC và SM bằng a 3 4 . Thể tích của khối chóp đã cho theo a là:
A. a 3 3 4
B. a 3 3 2
C. a 3 3 6
D. a 3 3 12
Cho hình chóp tứ giá đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 ° . Gọi M là điểm đối xứng của C qua D, N là trung điểm SC. Mặt phẳng (BMN) chia khối chóp S.ABCD thành hai phần. Tỉ số thể tích giữa hai phần (phần lớn trên phần bé) bằng:
A. 7 5
B. 1 7
C. 7 3
D. 6 5
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, và SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 45 ° . Gọi M là điểm đối xứng của C qua B và N là trung điểm của SC. Mặt phẳng (MND) chia khối chóp S.ABCD thành hai khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V 1 khối đa diện còn lại có thể tích V 2 (tham khảo hình vẽ bên đây). Tính tỉ số V 1 V 2
A. V 1 V 2 = 12 7
B. V 1 V 2 = 5 3
C. V 1 V 2 = 1 5
D. V 1 V 2 = 7 5
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 60 ° . Gọi M là điểm đối xứng với C qua D; N là trung điểm của SC, mặt phẳng ( BMN) chia khối chóp S.ABCD thành hai phân. Tính tỉ số thể tích giữa hai phần đó
A. 1 5
B. 7 3 .
C. 1 7
D. 7 5