Đáp án B
Ta có: S B A ^ = 60 ∘ ⇒ S A = A B tan 60 ∘ = a 3
V A . A C D = 1 3 S A . S A C D = 1 3 . a 3 . a 2 2 = a 3 3 6
Lại có: V S . A M N V S . A C D = S M S C . S N S D = 1 4 ⇒ V S . A M N = a 3 3 24
Đáp án B
Ta có: S B A ^ = 60 ∘ ⇒ S A = A B tan 60 ∘ = a 3
V A . A C D = 1 3 S A . S A C D = 1 3 . a 3 . a 2 2 = a 3 3 6
Lại có: V S . A M N V S . A C D = S M S C . S N S D = 1 4 ⇒ V S . A M N = a 3 3 24
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy, mặt bên (SBC) tạo với đáy 1 góc bằng 60 ∘ . Gọi M, N lần lượt là trung điểm của SB và SC Thể tích V của khối chóp S.AMN?
A. V = a 3 2
B. V = a 3 4
C. V = a 3 3 32
D. V = a 3 3 8
Cho hình chóp S.ABCD có đáy là hình vuông cạnh cạnh 2 2 bên SA vuông góc với mặt phẳng đáy và SA = 3 Mặt phẳng qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP
A. V = 125 π 6
B. V = 32 π 3
C. V = 108 π 3
D. V = 64 2 π 3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a. Cạnh bên SA vuông góc với đáy và SA=a. Gọi M, N lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích V của khối chóp S.AMN
A. V = a 3 36
B. V = a 3 5 15
C. V = a 3 3 18
D. V = a 3 30
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng (ABCD). Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60 ° . Gọi M, N lần lượt là trung điểm của các cạnh SB, SC. Thể tích khối chóp S.ADNM bằng
A. 6 8 a 3
B. 3 6 16 a 3
C. 6 16 a 3
D. 6 24 a 3
Cho hình chóp S.ABCD có đáy BACD là hình vuông cạnh a, cạnh bên SA = a và vuông góc với mặt đáy (ABCD). Trên SB, SD lần lượt lấy hai điểm M, N sao cho S M S B = m > 0 , S N S D = n > 0 . Tính thể tích lớn nhất V max của khối chóp S,AMN biết 2 m 2 + 3 n 2 = 1 .
A. V max = a 3 6 72
B. V max = a 3 48
C. V max = a 3 3 24
D. V max = a 3 6
Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt phẳng đáy. Mặt phẳng ( α ) qua A và vuông góc với SC cắt cạnh SB, SC, SD lần lượt tại các điểm M, N, P. Thể tích V của khối cầu ngoại tiếp tứ diện CMNP là
A. V = 32 π 3
B. 64 2 π 3
C. 108 π 3
D. 125 π 6
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2 2 , cạnh bên SA vuông góc với mặt đáy. Mặt phẳng α qua A và vuông góc với SC cắt các cạn SB, SC, SD lần lượt tại các điểm M, N, P. Tính thể tích V của khối cầu ngoại tiếp tứ diện CMNP.
A. V = 108 π 3
B. V = 64 2 π 3
C. V = 125 π 6
D. V = 32 π 3
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, hai mặt phẳng (SAB) và (SAD) cùng vuông góc với đáy, biết S C = 3 Gọi M, N, P, Q lần lượt là trung điểm của SB, SD, CD, BC. Tính thể tích của khối chóp A.MNPQ
A . a 3 3
B . a 3 8
C . a 3 12
D . a 3 4
Cho hình chóp tứ giác đều S.ABCD, đáy là hình vuông cạnh a, cạnh bên tạo với góc 60 ° . Gọi M là trung điểm của SC. Mặt phẳng qua AM và song song với BD, cắt SB, SD lần lượt tại E và F và chia khối chóp thành hai phần. Tính thể tích V của khối chóp không chứa đỉnh S.
A. V = a 3 6 36
B. V = a 3 6 9
C. V = a 3 6 18
D. V = a 3 6 12