a: Chọn mp(SAD) có chứa IM
(SAD) giao (ABCD)=AD
Gọi giao của IM với AD là K
=>K là giao điểm cần tìm
b: Gọi O=AD giao BC
Chọn mp(SAD) có chứa IM
(SAD) giao (SBC)=SO
Gọi giao của IM với SO là G
=>G là giao cần tìm
a: Chọn mp(SAD) có chứa IM
(SAD) giao (ABCD)=AD
Gọi giao của IM với AD là K
=>K là giao điểm cần tìm
b: Gọi O=AD giao BC
Chọn mp(SAD) có chứa IM
(SAD) giao (SBC)=SO
Gọi giao của IM với SO là G
=>G là giao cần tìm
Cho hình chóp S. ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi I,J là trung điểm SA; SB. Lấy điểm M tùy ý trên SD. Gọi H là giao điểm của AD và BC. Tìm giao điểm của IM và (SBC)
A. là giao điểm của IM và SJ
B. là giao điểm của IM và SH
C. là giao điểm của SH và MJ
D. tất cả sai
Cho hình chóp S. ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi I,J là trung điểm SA; SB. Lấy điểm M tùy ý trên SD. Gọi H là giao điểm của AD và BC; O là giao điểm của AC và BD. Tìm giao điểm của JM và (SBC)
A. là giao điểm của JM và SI
B. Là giao điểm của SO và IM
C. là giao điểm của JM và SO
D. Là giao điểm của IM và SJ
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AD.Gọi H,K lần lượt là trung điểm SB, SD, I=AC giao BD. Xét vị trí tương đối của
a) AI và BC
b) HK và BC
c) HK và SI
d) Tìm giao điểm của AH và mp (SBC)
1) cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB, E = AC, AC giao BD. Gọi M,N lần lượt là trung điểm SA,SC. Xét vị trí tương đối của
a) BD và AC
b) MN và AC
c) MN và SE
d) Tìm giao điểm của SN và mp (ABCD)
Cho hình chóp S.ABCD, có đáy ABCD là hình thang có đáy lớn AD . Gọi E, F lần lượt là trung điểm của SA, SD.
a) Tìm giao tuyến của các cặp mặt phẳng: (SAC) và (SBD), (SAD) và (SBC).
b) Chứng minh EF// (ABCD) và EF// (SBC)
c) Gọi K là giao điểm của AB và CD. Tìm M, N lần lượt là giao điểm của SB và (CDE); SC và (EFM). Từ đó, tìm thiết diện của hình chóp cắt bởi mặt phẳng (KEF)
d) Cho AD=2BC. Tính tỉ số diện tích của tam giác KMN và tam giác KEF .
giúp mình giải câu d với ạ
Cho hình chóp S.ABCD có đáy là hình thang ABCD, đáy lớn AB, M là trung điểm của SD.
a. Tìm giao tuyến của (ABM) và (SCD).
b. Gọi N là trung điểm của SC, P là một điểm trên cạnh BC và khác với điểm B và điểm C. Tìm giao điểm Q của SD với (ANP).
Cho hình chóp đỉnh S có đáy là hình thang ABCD với AB là đáy lớn. Gọi M, N theo thứ tự là trung điểm của các cạnh SB và SC.
a) Tìm giao tuyến của hai mặt phẳng (SAD) và (SBC)
b) Tìm giao điểm của đường thẳng SD với mặt phẳng (AMN)
c) Tìm thiết diện của hình chóp S.ABCD cắt bởi mặt phẳng (AMN)
Cho hình chóp S.ABCD có đáy ABCD là hình thang,AB là đáy lớn,O là giao điểm của AC và BD. Gọi M,N lần lược là trung điểm của SB và SD a) Chứng minh CD // (SAB) b) Tìm giao tuyến của hai mặt phẳng (CMN) và (ABCD) c) Gọi P là trung điểm của SC, I là giao điểm của OP và (CMN). Tính tỉ số IP/IO
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA, SC, E = AC giao BD.
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
c) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)
cho hình chóp S.ABCD, đáy ABCD là hình thang, có đáy lớn AB. Gọi M,N lần lượt là trung điểm SA, SC, E = AC giao BD.
a) tìm giao tuyến của 2 mặt phẳng (SAC) và (SBD)
b) tìm giao tuyến của 2 mặt phẳng (SAD) và (SBC)
c) tìm giao tuyến của 2 mặt phẳng (SAB) và (SCD)