Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=2a, BC=a. Các cạnh bên của hình chóp bằng nhau và bằng a 2 . Gọi M, N lần lượt là trung điểm của các cạnh AB, CD. K là điểm trên cạnh AD sao cho KD=2KA. Tính khoảng cách giữa hai đường thẳng MN và SK.
A. 3 a 2
B. a 2 3
C. a 3 7
D. a 21 7
Cho hình chóp S.ABCD có các cạnh bên bằng nhau và bằng 2a, đáy là hình chữ nhật ABCD có A B = 2 a , A D = a . Gọi K là điểm thuộc BC sao cho 3 B K → + 2 C K → = 0 → . Tính khoảng cách giữa hai đường thẳng AD và SK.
A. 2 165 a 15 .
B. 165 a 15 .
C. 2 135 a 15 .
D. 135 a 15 .
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Mặt bên SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Gọi M và N lần lượt là trung điểm của các cạnh AB, CD. Khoảng cách giữa hai đường thẳng CM và SN bằng
A. a 3 4
B. 3 a 2 2
C. a 3 2
D. 3 a 2
Cho hình chóp đều S.ABCD có cạnh đáy bằng 2 a , cạnh bên bằng 3 a . Gọi M là trung điểm CD. Khoảng cách giữa hai đường thẳng AC và SM bằng
A. 2 a 3
B. 2 2 a 3
C. 2 a 3
D. a.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi M là trung điểm của CD. Biết khoảng cách giữa hai đường thẳng BC và SM bằng a 3 4 . Thể tích của khối chóp đã cho theo a là:
A. a 3 3 4
B. a 3 3 2
C. a 3 3 6
D. a 3 3 12
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a, cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng
A. 224 21
B. 14 42
C. 2 14 21
D. 14 21
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy. Góc giữa SC và mặt đáy bằng 45 0 . Gọi E là trung điểm BC. Tính khoảng cách giữa hai đường thẳng DE và SC.
A. a 5 19
B. a 38 19
C. a 5 5
D. a 38 5
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy ABCD. Góc giữa SC và mặt đáy bằng 45 ° . Gọi E là trung điểm BC. Tính khoảng cách giữa hai đường thẳng DE và SC
A. a 38 19
B. a 5 5
C. a 38 5
D. a 5 19
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB=2a , BC= a tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi E là trung điểm của CD Tính theo a khoảng cách giữa hai đường thẳng BE và SC
A. a 30 10
B. a
C. a 3 2
D. a 5 5