Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho khối chóp S.ABCD có thể tích bằng 3 a 3 . Mặt bên SAB là tam giác đều cạnh a, thuộc mặt phẳng vuông góc với đáy, biết đáy ABCD là hình bình hành. Tính theo a khoảng cách giữa hai đường thẳng SA và CD
A. 2 a 3
B. a 3
C. a
D. 6a
Cho khối chóp S.ABCD có thể tích bằng a 3 . Mặt bên SAB là tam giác đều cạnh a và đáy ABCD là hình bình hành. Tính theo a khoảng cách giữa SA và CD.
A. 2 3 a
B. 3 a
C. 2 a 3
D. a 2
Cho khối chóp S.ABCD có thể tích bằng a 3 . Mặt bên SAB là tam giác đều cạnh a và đáy ABCD là hình bình hành. Khoảng cách giữa SA và CD bằng
A. 2 a 3
B. a 3
C. a 2
D. 2 3 a
Cho khối chóp S.ABCD có thể tích bằng a 3 . Mặt bên SAB là tam giác đều cạnh a và đáy ABCD là hình bình hành. Khoảng cách giữa SA và CD bằng
A. 2 a 3
B. a 3
C. a 2
D. 2 3 a
Cho khối chóp S.ABCD có thể tích bằng a 3 . Mặt bên SAB là tam giác đều cạnh a và đáy ABCD là hình bình hành. Khoảng cách giữa SA và CD bằng:
A. 2 a 3 .
B. a 3 .
C. a 2 .
D. 2 3 a .
Cho khối chóp S.ABCD có thể tích bằng a 3 . Mặt bên SAB là tam giác đều cạnh a và đáy ABCD là hình bình hành. Khoảng cách giữa SA và CD bằng
A. 2 a 3
B. a 3
C. a 2
D. 2 3 a
Cho khối chóp S.ABCD có thể tích bằng 64 cm 3 . Mặt bên SAB là tam giác đều cạnh bằng 4cm và đáy ABCD là hình bình hành. Tính khoảng cách giữa hai đường thẳng SA và CD.
A. 2 3
B. 6 3
C. 4 3
D. 8 3
Cho hình chóp tứ giác SABCD có đáy ABCD là hình vuông cạnh a, mặt bên SAB là một tam giác đều và nằm trong một mặt phẳng vuông góc với đáy (ABCD). Tính thể tích khối chóp SABCD.
A. a 3 6
B. a 3 3 2
C. a 3 3 6
D. a 3 2
Cho khối chóp S.ABCD có thể tích bằng 64 cm 3 . Mặt bên SAB là tam giác đều cạnh bằng 4 cm và đáy ABCDlà hình bình hành. Tính khoảng cách giữa hai đường thẳng SA và CD.
A. 4 3
B. 6 3
C. 2 3
D. 8 3